Dilution Wave and Negative-Order Crystallization Kinetics of Chain Molecules

G. Ungar, ^{1,*} P. K. Mandal, ^{1,†} P. G. Higgs, ² D. S. M. de Silva, ¹ E. Boda, ¹ and C. M. Chen^{2,‡}

¹Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, United Kingdom

²School of Biological Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom (Received 17 April 2000)

We show that the crystal growth rate of a very long-chain n-alkane $C_{198}H_{398}$ from solution can decrease with increasing supersaturation and follow strongly negative order kinetics. The experimental behavior can be well represented by a theoretical model which allows the molecule to attach and detach as either extended or folded in two. The obstruction of extended-chain growth by unstable folded depositions increases disproportionately with increasing concentration. As a consequence of this abnormal kinetics, a "dilution wave" can propagate and trigger a folded-to-extended-chain transformation on its way.

PACS numbers: 87.15.Nn, 64.70.Dv, 81.10.Aj, 81.10.Dn