Study of Disorder in Different Phases of Tetratriacontane and a Binary Alkane Mixture, Using Vibrational Spectroscopy

P. A. Suranga R. Wickramarachchi,† Stephen J. Spells,* and D. Sujeewa M. de Silva†

Materials and Engineering Research Institute, City Campus, Sheffield Hallam University, Sheffield S1 1WB, U.K.

Received: September 22, 2006; In Final Form: December 13, 2006

Raman spectroscopy has been used to investigate the monoclinic crystal \rightarrow rotator \rightarrow melt phase transitions in $n\text{-}C_{34}H_{70}$, for both real-time heating and cooling runs. Changes in band intensity and frequency in the CH₂ bending, CH₂ twisting, skeletal C-C stretching, and CH₃ rocking regions revealed both transitions, particularly when using band components related to gauche bonds. In the room temperature infrared spectrum, the CH₂ rocking—twisting and CH₂ wagging progressions were observed and indexed for $n\text{-}C_{34}H_{70}$ and a 2:1 (w/w) mixture of $C_{34}H_{70}$ and $C_{36}D_{74}$. This led to best estimates for the all-trans crystal core in both cases of 33 to 34 carbon atoms, indicating that the core corresponds to almost the whole of the $C_{34}H_{70}$ molecule.