
Introduction to Microcontroller

83
Workshop on Biosystems Technology held at University of Kelaniya from 20 to 27 June 2015

Lesson 14

Title of the Experiment: Introduction to Microcontroller
(Activity number of the GCE Advanced Level practical Guide – 27)

Name and affiliation of the author:
 N W K Jayatissa
 Department of Physics, University of Kelaniya

Introduction

A computer consists of a Central Processing Unit (CPU), Read Only Memory (ROM), Random Access
Memory (RAM) and Input/Output (IO) ports. The CPU takes instructions from the ROM and
executes them. Temporary data is stored in the RAM, and IO ports are used for external
communication. A microcontroller is different to a microprocessor because it has all these things
on a single chip. There are many sorts of microcontrollers available, but the one used in this syllabus
is Peripheral Interface Controller (PIC) chips, manufactured by Microchip. The chip requires only
an external clock source, generated from a crystal, to operate. PICs generally have a few Kb of ROM,
256 or less bytes of RAM, 256 bytes of EEPROM and several analogue and digital IO lines. The
program you write is stored in flash ROM. Hence, it can be erased and reprogrammed many times.
The PIC was the first widely available device to use flash memory, which makes it ideal for
experimental work.

The PIC computer follows the Harvard architecture. This means that instructions are held in
different memory to data, unlike on a normal PC where instructions and data share the same
memory. (This is Von Neumann architecture.) In the PIC, the instruction memory is 14 bits wide,
and the data memory is 8 bits.

There are several ways of programming the PIC - using BASIC, C, or Assembly Language. This lesson
is focused on teaching how to program a PIC using Assembly Language.

Pin configuration of PIC 16F84 Microcontroller

 (Microchip, 2008)

Figure 1: Pin configuration of PIC16F84 microcontroller

PIC 16F84 has two set of bidirectional ports from RA0 to RA3 and RB0 to RB7 (Figure 1). User can
configure pins of these ports as inputs (I) or outputs (O) according to their requirement. Vss and
VDD represent the negative and positive power supply pins respectively. Generally Vss is connected
to the ground (0V) and VDD is in between 2V (minimum) and 6V (maximum). Pin number 15 and 16
are used for connecting timing devices to the microcontroller. Pin number 4 (𝑀𝐶𝐿𝑅̅̅ ̅̅ ̅̅ ̅̅) is used to clear
the memory inside the chip. It is required to reprogram the chip after clearing the memory.
Therefore during the operation pin number 4 is connected to the VDD (or positive logic) to prevent
clearing the memory. Pin number 6 (RB0/INT) can be used as I/O pin or an Interrupt pin. A status
change in outside process could be sensed by this pin and make some operation as required. For

Introduction to Microcontroller

84
Workshop on Biosystems Technology held at University of Kelaniya from 20 to 27 June 2015

example, when the temperature reaches a set value, switch off the heating system and switch on
the indicator lamp. Pin 3 (RA4/TOCK1) can be used as I/O pin or another timer input.

It is a good habit to place a PIC chip on an IC socket as shown in figure 2, instead of soldering.

Figure 2: Microcontroller is fitted into a IC base

Block diagram of PIC16F84A

Central processing unit (CPU) is the brain of a microcontroller. That part is responsible for finding
and fetching the right instruction which needs to be executed, for decoding that instruction, and
finally for its execution. Arithmetic logic unit is responsible for performing operations of adding,
subtracting, moving (left or right within a register) and logic operations. Moving data inside a
register is also known as 'shifting'. PIC16F84 contains an 8-bit arithmetic logic unit and 8-bit work
registers. Figure 3 illustrate the block diagram of PIC16F84A controller. In this figure ALU block and
CPU block are illustrated using dotted line and dashed line respectively.

Figure 3: Block diagram of PIC16F84A

Introduction to Microcontroller

85
Workshop on Biosystems Technology held at University of Kelaniya from 20 to 27 June 2015

Before discussing further it is good to know a few important things that involve in any good
program.

The compiler will ignore anything after the semicolon (;) until the carriage returns. This helps to
add comments in the program. Assign meaningful names to constants and variables such as
COUNT, TIME etc. Finally it is good to place a heading and program description before the start of
the program with the help of semicolons as follows.

;;;
; Author : ;
; Date : ;
; Title: ;
; Description: ;
;;;

Registers

A register is a place inside the PIC that a programmer can write to or read from. The register file
map is divided into two parts known as BANK0 and BANK1 (Figure 4).

 (Microchip, 2008)

Figure 4: Register file map PIC 16F84

In a simple way BANK0 is used to manipulate data and BANK1 is used to control the operation. For
example, to light up an LED connected to PORT A0, you first need to setup RA0 as an output pin
using BANK 1 and the move to BANK0 and set the status of the pin to HIGH (logic 1).

Introduction to Microcontroller

86
Workshop on Biosystems Technology held at University of Kelaniya from 20 to 27 June 2015

STATUS register is used to walk between BANK0 to BANK1. The 8-bit STATUS register is shown in
figure 5.

Figure 5: STATUS register

The 5th bit or RP0 bit is known as the register bank select bit. Setting bit 5 of the STATUS register to
‘1’ select BANK 1 and clearing this bit to ‘0’ select BANK0. The STATUS register is located at 03h
address. Tri state registers TRISA and TRISB located in BANK1 used to configure status of the I/O
pin. TRISA and TRISB registers are used to set input and output status of PORTA and PORTB pins
respectively.

Setting and clearing pins of tri state registers (TRISA & TRISB) can be done by sending ‘1’ or ‘0’ to
the appropriate register. Consider PORTA as an example, it has 5 bits (RA0 to RA4) and sending
10101 binary pattern (15h) to TRISA make pin 17, 1 and 3 as inputs and pin 18 and 2 as outputs.

There are another two important registers named W and F. All the calculations and logical

manipulations such as addition, subtraction,  (&) and  (OR) are executed via W register. In order
to move data from A to B, the data has to move from A to W and then from W to A. The W register
is also known as the working register. The register F represents any location in the internal RAM
regardless whether those are special or general purpose registers.

Instructions

There are 35 instructions in the PIC16F84 instruction set consisting of an opcode and operand/s.
Basically, the opcode specifies what to do and the operand/s specify how or where. These
instructions are split into several groups as follows.

Table 1: List of Instructions

MOVE INSTRUCTIONS

MOVF Move F

MOVLW Move the literal value to W

MOVWF Move The Contents Of W Into The Register Address That Follows

CLEAR INSTRUCTIONS

CLRF Clear F

CLRW Clear W

ARITHMATIC INSTRUCTIONS

ADDWF Add the contents of the W register and any other register that
specified in the program (ADD W & F)

SUBWF Subtract the content of W from F (syntax is same as the above)

ADDLW Adds the contents of the W register to a number specified.

SUBLW Subtract the content of W from the literal

Introduction to Microcontroller

87
Workshop on Biosystems Technology held at University of Kelaniya from 20 to 27 June 2015

LOGICAL INSTRUCTIONS

ANDWF Perform an AND function on the W register and another register.

IORWF Perform inclusive OR function on W and another register

XORWF Perform exclusive OR function on W and another register

ANDLW Perform an AND function with the contents of the W register

IORLW Inclusive OR literal with W

XORLW Exclusive OR literal with W

COMF Provide inversion (compliment) of the bits in the specified register

DECREMENTING AND INCREMENTING INSTRUCTIONS

DEC Decrement F

INC Increment F

BIT SETTING AND CLEARING

BSF Set the bit that specified in a register (set bit to 1)

BCF Clear a bit that specified in a register (set bit to 0)

PROGRAM CONTROL INSTRUCTIONS

GOTO Program directed to another address (instruction does exactly
what it says)

CALL Calling a subroutine (CALL followed by the subroutine name)

RETURN Return from subroutine to the main program

RETLW Return with a literal value which is placed in W

RETFIE PC point back to the main program after finishing the interrupt
routine

SKIPPING INSTRUCTIONS

DECFSZ DECFSZ command will decrement the value stored in the F register
by 1. If the result is not 0, then the next instruction will be
executed otherwise the next instruction will be skipped.

INCFSZ INCFSZ command will increment the value stored in the F register
by 1. If the result is not 0, then the next instruction will be
executed otherwise the next instruction will be skipped.

BTFSC This instruction will test the bit we specify in the register. If the bit
is a 0, then the next instruction will be skipped.

BTFSS This instruction will test the bit we specify in the register. If the bit
is a 1, then the next instruction will be skipped.

ROTATION & SWAP INSTRUCTIONS

RRF Move a bit in a register one place to the right. (divide by 2)

RLF Move a bit in a register one place to the left. (multiplied by 2)

Introduction to Microcontroller

88
Workshop on Biosystems Technology held at University of Kelaniya from 20 to 27 June 2015

SLEEP & WATCHDOG TIMER

SLEEP Instruction does exactly what it says

CLRWDT Clear watchdog timer

MISCELLANEOUS

NOP No operation. Add one cycle delay to the program.

OPTION Not recommended

TRIS Not recommended

Introduction to programing

Writing to the Ports

The following code is for sending some data to PORTA.

First line of the program uses bit set instruction (bsf). This operation set the 5th bit of the register
which is located at 03h address. Figure 4 illustrates the 03h address belonging to the STATUS
register. Setting the 5th bit of STATUS register (Figure 3) select the BANK1 where the tri state
registers (TRISA & TRISB) are located. In the next line of the program move the 00h literal value into
the working register (W). The value stored in the W register moves to 85h address in the next
instruction line. Sending all zeros to 85h address (TRISA , refer Figure 4) make all pins to output
mode.

Now it is possible to send 5V or 0V to the pins by setting the pin status to logic 1 (high) or logic zero
(low) respectively. Let us assume LED is connected to PORTA, Pin 2 and ground. Making Pin2 status
high, lit the LED and making it low, off the LED. This can be done by the following code.

Switch on LED

Switch off LED

In this program code, some numerical values are used to address registers. This can be avoided
using “equ’ instruction. The ‘equ’ instruction simply means something equals something else. It is
not an instruction for the PIC, but for the assembler. Let us assign some names for constants using
‘equ’ instruction.

Introduction to Microcontroller

89
Workshop on Biosystems Technology held at University of Kelaniya from 20 to 27 June 2015

Assigning names to constants make easy to understand the program.

Delay Loops

Adding delays to various parts of the program is an essential part. Therefore it is required to
understand the clock frequency and timing for one instruction cycle. This PIC chip requires 4 clock
cycles to complete one instruction cycle. In other words using a 4MHz oscillator, each instruction
will take 1µS to complete. Therefore our LED blinking program finished in less than 10 µS time. This
is far too fast for us to see, and it will appear that the LED is permanently on. To observe the blink
it is required to introduce a delay between turning the LED on and turning the LED off.

Generally a delay is introduced using up counting or down counting until it reaches zero. Once it
reaches zero, program counter (PC) exits from the delay loop and continue through the main
program.

Reading from the Ports

It is clear that sending zeros (0) or ones (1) to tri state registers (TRISA or TRISB) made the pin
status to output or input respectively. The following code shows setting up a bit 2 (pin 20) of the
PORTA as input.

The above code made the RA1 pin as input. Now it is possible to check the status of the input
continuously and change the program when it is low or high.

According to the instruction set (Table 1), status of a bit can be checked by BTFSC or BTFSS
commands. The BTFSC command checks the status of the bit (input is high or low) and continues
checking until the bit is clear (low input). Program counter exit from the loop and do the rest when
the bit becomes logic low. In a similar way BTFSS command check the status of the bit and exit from
checking when the bit set to logic high.

MPLAB® IDE

MPLAB Integrated Development Environment (IDE) is a comprehensive editor, project manager and
design desktop for application development of embedded designs using Microchip PICmicro®
microcontrollers.

Initially run the MPLAB.IDE, then select File > New to create blank edit window. It is possible to
type code in this window or copy and paste on this window. The new file save in a new directory
named C:\MyProject as LEDBlink.asm.

To start a new project select Project > Project Wizard and press Next in the Welcome screen. In the
next screen select the PIC micro used in the project (16F84A) from the pull down menu. In the next
screen full path to the MPASM assembler executable should appear. If this box is empty click

Introduction to Microcontroller

90
Workshop on Biosystems Technology held at University of Kelaniya from 20 to 27 June 2015

browse to locate mpasmwin.exe in the machine. The next screen requires to enter project name
and directory to save the project. Project name would be any meaningful name and browse the
C:\MyProject for the directory. Add the source file into the project in the next screen (select
LEDBlink.asm and press Add). Click Next and check the summary before you finish the wizard.

Now complete the work required to build the project. In this process Microchip MPASM toolsuite
assemble the source code. Select Project > Build All to start this process. Output window deliver
the message “BUILD SUCEEDED” for successfully assemble files. In this process generates a
LEDBlink.hex file.

Programing the device

There are several programing devices to program microcontrollers. Programmer or programing
device is used to transfer the hex file into the real device. Initially it is required to establish the
communication between programmer and the computer. The hex file is then opened using
programmer and transfer the program into the microcontroller. Once the programing is finished it
is possible to remove the microcontroller from the programmer. Now the loaded program may run
when it is powered up.

Experiment 1- Blinking LED (Sending data to ports)

Apparatus:

Demonstration board, PIC programmer, PIC 16F84A microcontroller, DC power supply

Theory:

Changing the output pin status from low to high and high to low continuously. Connecting LED to
the above pin makes the status change visible. The LED on and off times are important to identify
the change in the pin status. Fast switching or blinking cannot be identified by the human eye.
Therefore it is required to add a delay in between on and off states. The demonstration board is
connected to a 4 MHz crystal hence evaluate the time for one instruction cycle before writing the
delay loop.

Learning outcome:

At the end of the experiment, the student will be able to demonstrate skills on identifying
microcontroller pins and sending data to microcontroller ports.

Procedure:

Part 1

Read the above description carefully and write the assembly program to blink the LED in the
following diagram (Figure 6). Identify the LED’s and crystal oscillator in the demonstration board.

Introduction to Microcontroller

91
Workshop on Biosystems Technology held at University of Kelaniya from 20 to 27 June 2015

Figure 6: Circuit diagram for Experiment 1

Build the project using MPASM.

Transfer the hex file to the microcontroller using a given programmer.

Remove the chip from the programmer and fix it to the demo board.

Make the required connection according to the diagram

Observations:

Conclusion:

Introduction to Microcontroller

92
Workshop on Biosystems Technology held at University of Kelaniya from 20 to 27 June 2015

Part 2

Change the parameters in the delay loop and observe the difference.

Observations:

Conclusion:

Experiment 2- Push button operation (Reading data from ports)

Apparatus:

Demonstration board, PIC programmer, PIC 16F84A microcontroller, DC power supply

Theory:

Microcontroller I/O pins can be configured as either input or output. Input configuration is useful
when connecting external sensors to the system. Change of the sensor or any other device
connected to the input pin can be sensed by the microcontroller and perform the necessary action.

Learning outcome:

At the end of the experiment, the student will be able to demonstrate skills on receiving signals
from sensors.

Introduction to Microcontroller

93
Workshop on Biosystems Technology held at University of Kelaniya from 20 to 27 June 2015

Procedure:

Part 1

Push button or a sensor that can be used to connect to the microcontroller as shown in figure 7.
Write the assembly code to operate the LED in experiment 1 when the push button is pressed.

Figure 7: Push button configurations

Download the file to the microcontroller and run the program.

Observations:

Conclusion:

PART 2

Rearrange the program to identify the switch position. In this case one LED is required to indicate
the push position and another LED is required to indicate button release position.

Observations:

Conclusion:

References

Microchip. (2008). PIC 16F84A datasheet.

Introduction to Microcontroller

94
Workshop on Biosystems Technology held at University of Kelaniya from 20 to 27 June 2015

