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Abstract—In this paper, free vibration of thick
equilateral triangular plates subject to classical
boundary conditions has been investigated based on
a new shear deformation theory, which needs no
shear correction factor for stress distributions. The
numerical modeling is performed by means of
Rayleigh-Ritz method to obtain the concerned
eigenvalue problem. The objective is to find the
effect of different physical and geometric
parameters on natural frequencies of the plate. New
results for natural frequencies along with 3D mode
shapes have been evaluated after the test of
convergence and validation with the available
results.

Keywords; Vibration; Equilateral plate; Rayleigh-Ritz
method, 3D mode shapes.

. INTRODUCTION

Design engineers and architects often need
plates with different geometries for convenient
structural design and performance. As such, it is
also worth to study the dynamical and structural
behavior of triangular plates.

Gorman [1-3] has proposed a highly accurate
analytical solutions (method of superposition) for
free vibration of right triangular plates with simply
supported edge supports, with combinations of
clamped-simply supported boundary supports and
different boundary conditions with one edge free
respectively. Kim and Dickinson [4, 5] have
studied free vibration of isotropic and orthotropic
right triangular plates and of generally triangular
plates respectively by using Rayleigh-Ritz
method. Transverse vibrations of triangular plates
have also been investigated by Singh and
Chakraverty [6] with various types of boundary
conditions at the edges by using boundary
characteristics orthogonal polynomials as basic
functions in the Rayleigh-Ritz method.
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In view of the mentioned, present authors have
taken a first time attempt to solve free vibration
problem of thick isotropic equilateral triangular
plate based on a new power-law exponent shear
deformation plate theory (PESDPT). The prime
objective is to evaluate the effect of various
physical and geometric parameters on non-
dimensional frequencies of this plate. As such, free
vibration behavior is found along with 3D mode
shapes after a valid test of convergence and
comparison with available results.

Il. PLATE THEORY

Let us consider an equilateral triangular plate
which can be determined by three numbers a, b

and C respectively in Cartesian coordinate system
and moderate thickness of h. One can easily
represent the displacement fields of thick isotropic
triangular plate based on generalized higher-order
shear deformation plate theory as below:
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where U, V, W, g, and ¢, are the unknown

displacement components for the deformed
triangular thick plate; f(z) is the shape function
which determines the parabolic distribution of the
transverse shear strains and stresses across the
thickness. Present investigation assumes a new
power-law exponent shear deformation plate
theory (PESDPT) and accordingly

2n+1 2n
f(2) = h(zj —(2n +1)Z(1j and this form of
h 2



Symposium on Statistical & Computational Modelling with Applications - 2016

plate theory is the first of its kind to implement in
finding natural frequencies of the thick triangular
plate. Non-zero linear strains associated with this
theory can now be expressed as:
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Based on these strains of Eq. (2), one may write
the linear stresses in the following matrix form:
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Oy Q21 sz 0 0 0 €y
Ty =] O 0 Q, O 0 R7y
Te 0 0 0 Qp 0|7
T, 0 0 0 0 Qs |7y
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where the reduced stiffness components are
E(z VE(z
Qu=Qu=r 0 Qu=Qu-1od)
E(2)
and Q,y = Qg5 = Qg = 2040

1l. MECHANICAL ENERGIES

Using Egs. (2) and (3), the strain (U ) and kinetic (T
) energies concerned with the deformed plate can be
defined as follows by eliminating certain redundant
terms in original expressions.
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The stiffness coefficients of Eq. (4) and cross-sectional
inertial coefficients of Eq. (5) are well-established for
higher-order shear deformation theory and their
expressions can be found in earlier works frequently.
Now the displacement components can be expressed as
harmonic type as below:

u(x, y;t) =U(x, y)exp(iawt),v(x, y;t) =V (X, y) exp(iwt)
w(x, y;t) =W (x, y)exp(iat), ¢, (X, y;t) = i(bx (x, y)exp(iot)

#, (X, y;t) = %dJy (x, y)exp(iot)
(6)

Here, U, V, W, @, CDyare the amplitudes of the

displacement components and @ is the natural
frequency. Substituting these forms of displacement in
strain and kinetic energies, we obtain the maximum
strain and kinetic energies of the following forms.
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In general, the triangle of Cartesian coordinate system
is to be mapped into right-angled triangle of natural
coordinate system and the transformation involves

= 1(X—gj n:Xand

a C C

x=al+bn;y=cnp

and the maximum strain and kinetic energies take the
following expressions.
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Here, @ = 9,
C

C a
H=—and 0 =—.
a h

V. RAYLEIGH-RITZ APPROXIMATION

In this numerical approximation, the amplitude of
respective displacement components involved in
Egs. (9) and (10) are to be expressed as linear
combination of simple algebraic polynomials
generated from Pascal’s triangle.
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In these series, C;, d i €., g, and hm are the
unknown constants to be determined and the admissible
functions (oiu, (p}', go:v, qo,l and gorf] must satisfy the

essential boundary conditions and may be denoted as

o' (X y)=a.p (X y)’ﬁo\j/ (x,y)= af‘//}/(x, y)
gollN(X! y) = afl/jl‘(N(Xi y)!(oll(xv y) = afl//ll(xi y)

Pe(X,Y) =awi(xy)
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where a, = &Pn9(1—& —77) depends on the
geometry of the plate and the indices
i j,k,I,m =1(1)np. The parameter p takes

the value 0, 1 or 2 according to as the side & =0
is free (F), simply supported (S) or clamped (C).
Similar interpretations can be given to the
parameters g and I corresponding to the sides
n=0 and & + 1 =1respectively.
Consequently one can find the generalized
eigenvalue problem for every kind of triangular
plates by equating the maximum strain and kinetic
energies to find the Rayleigh quotient and
deriving partially with respect to unknown
constant coefficients, but we have considered here
only equilateral triangular plate and the concerned

geometric parameters are: g — }/ and 4 = \@/
J3 2

as given in Fig. 1.

Figure 1. Equilateral triangular plate

V. NUMERICAL RESULTS

In this section, the non-dimensional frequencies
for the thick equilateral triangular plate have been
evaluated for different parameters after the test of
convergence and comparison with the available
results in special case for C-C-C edge condition

with 6 =100 in TABLE I. It can easily be found
that the eigenfrequencies are converging with
increase in number of polynomials involved in
displacement components and present results are
found to be in good agreement with [6].

In addition, TABLE Il shows the effect of base-
to-thickness ~ ratios on  non-dimensional
frequencies of the concerned plate and it reveals
that frequencies follow descending pattern with an
increase in such ratios irrespective of the
boundary conditions assumed. In addition, Fig. 2
represents first four lowest mode shapes of the
concerned plate with C-C-F edge support.

TABLE I. CONVERGENCE AND COMPARISON OF
FIRST FIVE NATURAL FREQUENCIES OF C-C-C

PLATE WITH & =100

Ny MODES

1 2 3 4 5
10 | 99.0296 | 190.8624 | 190.8624 | 327.6569 | 344.2996
15 | 99.0034 | 189.2425 189.2425 | 302.1998 | 319.9431
18 | 99.0000 | 188.9388 189.1213 | 299.6874 | 317.5551
21 | 98.9954 | 188.9377 188.9377 | 296.5598 316.4923
[6] | 99.022 189.05 189.22 296.85 316.83
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TABLE II. EFFECT OF & ON FIRST FIVE NATURAL FREQUENCIES

OF EQUILATERAL PLATES

1

) 1 2 3 4 5

3

c| 100 | 989954 | 188938 | 188.9377 | 2965598 | 316.4923
- | 20 | 983614 | 186276 | 186.2758 | 289.7738 | 308.6506
©I 10 [ ooas3s | 178615 | 1786145 | 199.9884 | 199.9884
Cl 5 | 89.7729 | 99.9942 | 99.9942 | 1244727 | 1552155
c| 100 | 815817 | 165020 | 165.2579 | 267.8886 | 286.5050
- | 20 | 810817 | 162.807 | 163.0272 | 2619261 | 279.6384
“I"20 | 705750 | 156392 | 1565896 | 198.4968 | 1987460
S| 5 | 742760 | 99.2484 | 99.3730 | 123.8073 | 136.6496
c| 100 | 400155 | 958337 | 1017871 | 1736736 | 1953130
- | 20 | 30.8686 | 94.9668 | 100.6223 | 170.8116 | 191.2387
“I 20 | 304183 | 923006 | 972071 | 1220249 | 1458796
F| 5 | 377400 | 610124 | 729398 | 837407 | 86.2455
o| 100 | 526272 | 122848 | 122.8481 | 2180862 | 2355702
- | 20 | 523525 | 121368 | 121.3677 | 2135650 | 230.2998
10 | 515200 | 117065 | 117.0649 | 1945083 | 194.5083
S| 5 | 485514 | 97.2541 | 97.2541 | 1035285 | 103.5285

3 4

Figure 2. First four 3D mode shapes for C-C-F triangular
plate

VI. CONCLUSIONS

In this investigation, natural frequencies of the isotropic
thick equilateral triangular plate have been evaluated by
means of Rayleigh-Ritz approximation. On this note,
we may summarize the following results:

e In Rayleigh-Ritz method, the number of
polynomials plays a crucial role in finding free
vibration of triangular plate.

e Natural frequencies go on converging with an
increase in a number of polynomials in
Rayleigh-Ritz method regardless of edge
conditions.
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e  Triangular base-to-thickness ratios have major
importance in getting natural frequencies, which
follow descending pattern with an increase in
such ratios.

e Like PESDPT, we may also find alternate forms
of plate theories for different mechanical
problems.
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