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Abstract—In this paper, free vibration of thick 

equilateral triangular plates subject to classical 

boundary conditions has been investigated based on 

a new shear deformation theory, which needs no 

shear correction factor for stress distributions. The 

numerical modeling is performed by means of 

Rayleigh-Ritz method to obtain the concerned 

eigenvalue problem. The objective is to find the 

effect of different physical and geometric 

parameters on natural frequencies of the plate. New 

results for natural frequencies along with 3D mode 

shapes have been evaluated after the test of 

convergence and validation with the available 

results. 
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I.  INTRODUCTION 

Design engineers and architects often need 
plates with different geometries for convenient 
structural design and performance. As such, it is 
also worth to study the dynamical and structural 
behavior of triangular plates. 

Gorman [1-3] has proposed a highly accurate 
analytical solutions (method of superposition) for 
free vibration of right triangular plates with simply 
supported edge supports, with combinations of 
clamped-simply supported boundary supports and 
different boundary conditions with one edge free 
respectively. Kim and Dickinson [4, 5] have 
studied free vibration of isotropic and orthotropic 
right triangular plates and of generally triangular 
plates respectively by using Rayleigh-Ritz 
method. Transverse vibrations of triangular plates 
have also been investigated by Singh and 
Chakraverty [6] with various types of boundary 
conditions at the edges by using boundary 
characteristics orthogonal polynomials as basic 
functions in the Rayleigh-Ritz method. 

In view of the mentioned, present authors have 
taken a first time attempt to solve free vibration 
problem of thick isotropic equilateral triangular 
plate based on a new power-law exponent shear 
deformation plate theory (PESDPT). The prime 
objective is to evaluate the effect of various 
physical and geometric parameters on non-
dimensional frequencies of this plate. As such, free 
vibration behavior is found along with 3D mode 
shapes after a valid test of convergence and 
comparison with available results. 

II. PLATE THEORY 

Let us consider an equilateral triangular plate 

which can be determined by three numbers ,a b
and c  respectively in Cartesian coordinate system 

and moderate thickness of h. One can easily 
represent the displacement fields of thick isotropic 
triangular plate based on generalized higher-order 
shear deformation plate theory as below: 
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where ,u ,v ,w
x and y are the unknown 

displacement components for the deformed 
triangular thick plate; f(z) is the shape function 
which determines the parabolic distribution of the 
transverse shear strains and stresses across the 
thickness. Present investigation assumes a new 
power-law exponent shear deformation plate 
theory (PESDPT) and accordingly 
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plate theory is the first of its kind to implement in 
finding natural frequencies of the thick triangular 
plate. Non-zero linear strains associated with this 
theory can now be expressed as: 
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Based on these strains of Eq. (2), one may write 
the linear stresses in the following matrix form: 
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where the reduced stiffness components are 

22211
1

)(




zE
QQ , 

22112
1

)(








zE
QQ

and 
)1(2

)(
665544




zE
QQQ . 

III. MECHANICAL ENERGIES 

Using Eqs. (2) and (3), the strain (U ) and kinetic (T
) energies concerned with the deformed plate can be 

defined as follows by eliminating certain redundant 

terms in original expressions. 
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The stiffness coefficients of Eq. (4) and cross-sectional 

inertial coefficients of Eq. (5) are well-established for 

higher-order shear deformation theory and their 

expressions can be found in earlier works frequently. 

Now the displacement components can be expressed as 

harmonic type as below: 
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Here, ,U ,V ,W ,x y are the amplitudes of the 

displacement components and   is the natural 

frequency.  Substituting these forms of displacement in 

strain and kinetic energies, we obtain the maximum 

strain and kinetic energies of the following forms. 
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In general, the triangle of Cartesian coordinate system 

is to be mapped into right-angled triangle of natural 

coordinate system and the transformation involves 
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following expressions.
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Here, 
a

c

c

b
  ,  and 

h

a
 . 

IV. RAYLEIGH-RITZ APPROXIMATION 

In this numerical approximation, the amplitude of 

respective displacement components involved in 

Eqs. (9) and (10) are to be expressed as linear 

combination of simple algebraic polynomials 

generated from Pascal’s triangle. 
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where  rqp

fa   1 depends on the 

geometry of the plate and the indices 

pnmlkji )1(1,,,,  . The parameter p  takes 

the value 0, 1 or 2 according to as the side 0  

is free (F), simply supported (S) or clamped (C). 
Similar interpretations can be given to the 
parameters q  and r corresponding to the sides 

0  and 1 respectively. 

Consequently one can find the generalized 
eigenvalue problem for every kind of triangular 
plates by equating the maximum strain and kinetic 
energies to find the Rayleigh quotient and 
deriving partially with respect to unknown 
constant coefficients, but we have considered here 
only equilateral triangular plate and the concerned 

geometric parameters are: 
3

1 and 
2

3

as given in Fig. 1. 

 

Figure 1. Equilateral triangular plate 

V. NUMERICAL RESULTS 

In this section, the non-dimensional frequencies 
for the thick equilateral triangular plate have been 
evaluated for different parameters after the test of 
convergence and comparison with the available 
results in special case for C-C-C edge condition 

with 100 in TABLE I. It can easily be found 

that the eigenfrequencies are converging with 
increase in number of polynomials involved in 
displacement components and present results are 
found to be in good agreement with [6]. 

In addition, TABLE II shows the effect of base-
to-thickness ratios on non-dimensional 
frequencies of the concerned plate and it reveals 
that frequencies follow descending pattern with an 
increase in such ratios irrespective of the 
boundary conditions assumed. In addition, Fig. 2 
represents first four lowest mode shapes of the 
concerned plate with C-C-F edge support. 

TABLE I. CONVERGENCE AND COMPARISON OF 

FIRST FIVE NATURAL FREQUENCIES OF C-C-C 

PLATE WITH 100  

np 

MODES 

1 2 3 4 5 

10 99.0296 190.8624 190.8624 327.6569 344.2996 

15 99.0034 189.2425 189.2425 302.1998 319.9431 

18 99.0000 188.9388 189.1213 299.6874 317.5551 

21 98.9954 188.9377 188.9377 296.5598 316.4923 

[6] 99.022 189.05 189.22 296.85 316.83 
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1 2 

3 4 

Figure 2. First four 3D mode shapes for C-C-F triangular 

plate 

VI. CONCLUSIONS 

In this investigation, natural frequencies of the isotropic 

thick equilateral triangular plate have been evaluated by 

means of Rayleigh-Ritz approximation. On this note, 

we may summarize the following results: 

 In Rayleigh-Ritz method, the number of 

polynomials plays a crucial role in finding free 

vibration of triangular plate. 

 Natural frequencies go on converging with an 

increase in a number of polynomials in 

Rayleigh-Ritz method regardless of edge 

conditions. 

 Triangular base-to-thickness ratios have major 

importance in getting natural frequencies, which 

follow descending pattern with an increase in 

such ratios. 

 Like PESDPT, we may also find alternate forms 

of plate theories for different mechanical 

problems. 
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TABLE II. EFFECT OF  ON FIRST FIVE NATURAL FREQUENCIES 

OF EQUILATERAL PLATES 

1

-

2

-

3 

  1 2 3 4 5 

C

-

C

-

C 

100 98.9954 188.938 188.9377 296.5598 316.4923 

20 98.3614 186.276 186.2758 289.7738 308.6506 

10 96.4534 178.615 178.6145 199.9884 199.9884 

5 89.7729 99.9942 99.9942 124.4727 155.2155 

C

-

C

-

S 

100 81.5817 165.029 165.2579 267.8886 286.5050 

20 81.0817 162.807 163.0272 261.9261 279.6384 

10 79.5750 156.392 156.5896 198.4968 198.7460 

5 74.2760 99.2484 99.3730 123.8073 136.6496 

C

-

C

-

F 

100 40.0155 95.8337 101.7871 173.6736 195.3130 

20 39.8686 94.9668 100.6223 170.8116 191.2387 

10 39.4183 92.3906 97.2071 122.0249 145.8796 

5 37.7409 61.0124 72.9398 83.7407 86.2455 

S

-

S

-

S 

100 52.6272 122.848 122.8481 218.0862 235.5702 

20 52.3525 121.368 121.3677 213.5650 230.2998 

10 51.5209 117.065 117.0649 194.5083 194.5083 

5 48.5514 97.2541 97.2541 103.5285 103.5285 

 

 


