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It is well known that the harmonic series Z?fﬂg is divergent. There have been
. . . . . 1 .
numerous studies investigating the convergence of subseries Z;‘{;lp—of harmonic
n
series when p,, takes a specific form. Another possible way to study the convergence

of such a subseries is in terms of the corresponding gap sequence (d,, )p—;, Where
dn = Pn+1— Pn-

. . 1 . . .
For a given subseries Z;’f’:laof harmonic series with gap sequence (d, )p=; We

consider any permutation p of the positive integers and define a new sequence
(en )n=1 by e, = d,n) for each n, making (e, )5, a rearrangement of (dy, )p=1.
For each n, we now have a new sequence of positive integers (g, )n=; that
corresponds to the gap sequence (e, )meq-

In this study we will be trying to determine conditions required for (d,, );=; so that
1
an
of convergence for every permutation p. For example, it is shown that if (d,, )n=; 1s

. 1 . . .
the subseries Y pey o and Y,;°_; — of harmonic series would have the same behavior
n

strictly increasing then Z;‘lepi is convergent and for every permutation p the
n
subseries Yo qi is also convergent. On the other hand if (d,, )= assumes a certain
n
value ¢ for infinitely many times and Z;’lepi is convergent, not every subseries

n

Yo qi obtained by rearranging (d,, )y=, is convergent.
n
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