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Abstract 

P-Tha lassaemi a is a d isorder of haemoglobin 
synthesis 1.•;hich does not have an effective cure 
for a major,ty of patients affected. Most patients 
have poor qual it y of life and die prematurely. The 
basic pai.hophysiology of P-thalassaemia is haemo­
lysis and ineffective erythropoiesis due to the 
im balance of p-globin chains in red blood cells. 
St ud ies done on the molecular pathology and 
naturally occurring mutations among patients have 
conclusively shown that decreasing the synthesis 
of a -globin chains ameliorates the severity of 
anaemia in P-thalassaemia. A series of recent in 
vitro and animal studies described in this paper 
shows that therapeutic inhibition of a -globin 
synthesis is feasible through genome editing of 
its major enhancer and pharmacological disruption 
of epigenetic enzymes . These novel pathways 
would invariably pave the way for an effective cure 
for P-thalassaemia which will be available for all 
patients in the future. 

Introduction 

P-Thalassaemia is one of the most common genetic 

diseases in the world1
• Approximately, 70,000 new 

births are reported every year2• In Sri Lanka, 50 to 

60 babies are born with severe forms of P­
thalassaemia annually3 • There are nearly 1800 

patients receiving treatment from 26 different 

centres all over Sri Lanka at present4
• Out of these 

patients, 68% has homozygous or compound 
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heterozygous P-thalassaemia major whi le 20% 
have severe haemoglobin E P-thalassaemia. 
Remainder consists of rare forms of thalassaemia 
that include sickle P-thalassaemia. 

The medical management of P-thalassaemia has 
improved considerably over the past few years 
with the availability of safe blood products and 
effective oral iron chelators5

• However, these treat­
ment modal ities only provide supportive care 
which should be continued throughout life6.7. 

Therefore, patients with P-thalassaemia expe­
rience a poor quality of life and die prematurely'. 
Consequently, the average life expectancy of a 
patient in Sri Lanka with P-thalassaemia is still 30 
to 40 years9 • The only mode of cure for P-thalas­
saemia at present is haematopoietic stem cell 
transplantation (HSCT) which is not available to a 
majority of patients due to lack of suitable donors 
and morbidities associated with the procedure10 • 

Therefore, multiple research studies are ongoing 
to discover a permanent cure that is suitable to all 
patients with P-thalassaemia11

• 

Pathophysiology of fl-thalassaemia 

The molecular pathology of thalassaemia is due to 
the defective synthesis of globin chains res­
ponsible for the production of adult haemoglobin 
(Haemoglobin A, HbA) in human red blood cells 

(RBCs). In P-thalassaemia, over 250 genetic muta­
tions in the p-globin gene lead to defective 
synthesis of p-globin peptides resulting in either 
absent (P0-thalassaemia mutations) or reduced 
(p♦ or p♦ •-thalassaemia mutations) production 

of p-globin chains in RBCs12• However, the syn­
thesis of a.-globin continues normally and this 

unopposed production leads to the accumulation 

of a.-globin chains within RBCs of patients with 

thalassaemia. These insoluble a.-globin chains 

precipitate in mature RBCs and their precursors to 
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result in haemolysis and ineffective erythro­
poiesis13. RBC destruction by these mechanisms is 
the primary factor leading to anaemia in patients 
with 13-thalassaemia. 

a.-Globin as a genetic modifier of f3-thalassaemia 

Although f3-thalassaemia is a prototype autosomal 
recessive genetic disease, it has a remarkable 
clinical heterogeneity. While most patients with 
homozygous 13-thalassaemia are transfusion depen­
dent, a significant proportion have variable phen­
otypes with inconsistent requirements for blood, 
and are transfusion independent (f3-thalassaemia 
intermedia or non-transfusion dependent f3-
thalassaemia)14. This clinical heterogeneity can at 
least be partly explained by the pathophysiology 
which revolves around the destructive effects of 
the unbalanced synthesis of a- and f3-like globin 
chains. A number of clinical studies done in the 
past identified two main naturally occurring 
mechanisms that modify the disease severity of 
J3-thalassaemia 15

•
16

• Firstly, decreasing the syn­
thesis of a-globin as seen in patients who co-inherit 
a-thalassaemia ameliorates the disease severity 
of J3-thalassaemia by favourably modulating the 
a.- to J3-like globin chain imbalance. Secondly, 
increasing the production of y-globin as seen in 
individuals with hereditary persistence of fetal 
haemoglobin, increases the J3-like globin pro­
portion in RBC and improves the clinical phenotype 
(17). Therefore, we hypothesised that if we can 
control the production of a.-globins in patients with 
J3-thalassaemia, it should reduce the excess of a­
globins thereby the destruction of RBCs which 
should lower the severity of J3-thalassaemia. 

Decreasing a.-globin as a treatment for 
13-thalassaemia 

All human genes are controlled by three inter­
related mechanisms namely, enhancers, trans­
cription factors and epigenetic mechanisms. 
Enhancers are DNA sequences that facilitate the 

transcription of genes. The regulation of the 

expression of a -globin is controlled by four 
enhancers located upstream of the a.-globin 
genes. Of these, 'MCS-R2' enhancer which is 
located 40kb from the a.-globin genes is considered 
as the main enhancer that promotes transcription 
of f3-globin genes18

• Similarly, several epigenetic 
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signatures including methylation and acetylation 
of histone proteins are important modulators of 
the regulation of J3-globin gene expression. Thera­
peutically, it is feasible to target these enhancers 
and epigenetic enzymes to devise a cure for J3-
thalassaemia. 

a.-globin enhancer genome editing 

Targeting of a -globin enhancer is feasible through 
a new genetic engineering tool - C:11S PR-Cas9 
(clustered, regularly interspaced, short pa li n­
dromic repeat-CRISPR associated system) genome 
editing technology. The basic principle of CRISPR­
Cas9 genome editing technique is to mutate a 
specific gene by cutting at a pre-determined target 
site of the human genome, commonly creating a 
deletion within the gene. In simple t erms CRISPR­
Cas9 reagents act as molecular scissors to cut DNA19

• 

As described previously, the MCS-R2 is the most 
important enhancer of human a -globin gene and 
is crucial for normal a -globin production in RBCs. 
Using CRISPR-Cas9, we designed a strategy to 
mutate MCS-R2 enhancer to decrease the synthesis 
of a -globin and examined this approach in vitro in 
erythroid cells and in vivo in mice. Firstly, we 
demonstrated successful deletion of MCS-R2 en­
hancer in vitro in human erythroid cells differen­
tiated from CD34+ haematopoietic stem and 
progenitor cells (HSPC) using CRISPR-Cas9 . As 
expected, the deletion of MCS-R2 enhancer was 
associated with a decrease in the expression of 
the a-globin gene. Next, we performed the same 
experiment in erythroid cells generated from 
CD34+ cells of patients with J3-thalassaemia. The 
deletion of MCS-R2 enhancer normalised the a/J3 
globin imbalance in RBC of patients with J3-thalas­
saemia. Finally, we validated this approach in vivo 
in mice. We performed stem cell transplantation 
(xenotransplantation) of genome edited CD34+ 
HSPC to immune compromised mice and showed 
that the edited cells are viable, retain their stem 
cell properties and are able differentiate in vivo 
similar to unedited cells 20 • These experiments 
provide proof of principle that genome editing of 
a-globin enhancer is a potential and a feasible 

pathway to devise a cure for J3-thalassaemia. 

The steps of any future clinical application of this 

approach would include isolation of CD34+ HSPC 
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from patients with j3-thalassaemia, genome edit 
t hem ex vivo to delete MCS-R2 enhancer and 
autologous transplantation of edited HSPC back to 
the patient. This approach will alleviate the need 
for HLA-matched sibling donors for HSCT therefore, 
would be available to all patients with 13-thalas­
saemia . Similarly, as the transplanted cells are 
autologous it will eliminate the need for immune­
suppression and minimize serious adverse effects 
of transpiantation 21 . 

Pharm acological modulation of epigenetic 
emymes 'i:o down regulate a-globin 

Th e o ther potential pathway of decreasing 
a-globin is through modulation of epigenetic factors 
t hat regulate cx-globin gene expression. We 
performed a screen of several novel epigenetic 
compounds in a small-scale erythroid diffe­
rentiation cell culture system to identify potential 
drugs or compounds that decrease the production 
of a -globin 22 • We identified and validated two 
compounds which showed favourable changes in 
globin gene expression . Firstly, we showed that 
'IOXl', which is a newly synthesised chemical com­
pound that inhibits histone demethylase enzyme 
down regulates the expression of a-globin without 
altering the expression of other globin genes or 
perturbing erythroid differentiation23

• Secondly, 
we demonstrated that 'vorinostat', which is a FDA 
approved histone deacetylase inhibitor drug has 

the potential to down regulate the expression of a­
globi n while upregulating y-globin thus demons­
trating synergistic beneficial effects for j3-thalas­
saemia24. Out of the two drugs, IOXl requires further 

optimisation of its medicinal properties before it 
can be utilised in animals or humans. In contrast, 
being a FDA approved drug for other indications, 
vorinostat is a suitable drug to be tested directly 

in phase 2 clinical trials in patients with 13-thalas­
saemia. 

Conclusions 

The clinical severity of j3-thalassaemia primarily 
depends on the degree of imbalance between a­

and 13-globin chains in RBCs. Natural reduction of 
a -globin in individuals who co-inherit both a- and 

P-thalassaemia have conclusively shown to 

decrease the need for blood transfusion in patients 
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with 13-thalassaemia. Down regulation of the 
expression of a-globin through genome editing 
of its enhancers or altering epigenetic factors are 
promising new strategies to devise a cure for 13-
thalassaemia . 
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