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Abstract 

The finite difference method, spectral method, and double shifted Lagrange’s polynomials have 

been discussed for the one-dimensional inverse problem of the heat equation with control 

parameters and the source term in literature. Here, we present, Fourier method for the one-

dimensional parabolic inverse problem with Dirichlet boundary conditions. In this study, after 

analyzing the control parameters, the initial condition and the source term are used to track a 

temperature distribution at a point in the interval. We validated that desired temperature 

distribution and measured temperature distribution (or the point evaluation) at an internal point 

overlap each other for the derived values of control parameters (source term and initial 

distribution) using the Fourier method. Moreover, we validated the temperature distribution at a 

point in the domain and tracked the desired harmonic and linear temperature distributions using 

numerical simulations. Finally, we simplified the above numerical simulations using the 

COMSOL software and illustrated some figures to the given point. 

Keywords 
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Introduction 

Heat conduction problems have achieved substantial popularity in science and industrial 

fields over the last five decades. Industry-related heat conduction research has great 

significance and is mostly regarded as the inverse problem of the heat conduction 

equation. Such as, by determining boundary, initial, or the internal data of the medium of 

heat transferred, a known temperature at the internal or the boundary point of the domain 

can be controlled. Usually, solving the inverse problem of the heat conduction equation 

is ill-conditioned and the small perturbation of data will lead to a problem with a huge 

error. 

The inverse problem in (Grysa, 1980) discusses the dependence of the boundary 

conditions of different types on the prescribed temperature state. Moreover, an example 

of (Grysa, 1980) illustrates that how to make use of given temperature distribution on the 

surface to determine the thermal conditions of the heat medium near the sphere surface. 

(Dehghan, 2003) discusses a numerical approach for the one-dimensional parabolic 

inverse problem with control parameters. It presents several finite difference formulas for 

the inverse problem of finding a source parameter in the diffusion equation. Though the 

most usual way of generating a finite difference scheme is the use of Taylor’s series, the 

method developed here is based on the modified equivalent partial differential equations. 

A direct computation technique for the inverse problem of finding a source term control 

parameter, using the spectral method can be found in (M Dehghan, 2006) Moreover there 
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the function u(x,t) of two independent variables 0 ≤ 𝑥 ≤ 𝑙 and 0 ≤ 𝑡 ≤ 𝑇 has been 

expanded in terms of double shifted Lagrange’s Polynomials. In (Ivanchov, Inverse 

Problem for General One Dimensional Parabolic Equation, 1998) the boundary integral 

method for solving one-dimensional homogeneous heat conduction equation has been 

discussed while (Ivanchov, One Dimensional Heat Conduction Equation for Inverse 

Problem, pp.60-66 2011) the existence and the uniqueness of the solutions of the one-

dimensional inverse problem of the heat equation with time-dependent leading coefficient 

have been discussed. (Kanca, 2013) investigates the inverse problem of finding a time-

dependent diffusion coefficient in a parabolic equation with the periodic boundary and 

integral overdetermination conditions. However, (Zhang & Guo, 2015)shows the 

numerical method is proposed to solve the inverse problem based on a Fourier expansion. 

Moreover, the articles (Hussein, Lesnic, & Ivanchov, 2014), (Negero & Tufa, 2014) and 

(Ivanchov, Inverse problems for Parabolic Equations, 2003) have been discussed on 

several sides of inverse problems for the parabolic equation.  The novelty of our work is 

we use the Fourier method to construct the control parameters, initial condition, and the 

source term.  

Consider the following uncontrolled heat equation with homogeneous Dirichlet boundary 

conditions in a finite-dimensional interval: 

                      𝑢𝑡(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) = 0        0 ≤ 𝑥 ≤ 𝑙                                                           (1)       

                          𝑢(0, 𝑡) = 𝑢(𝑙, 𝑡) = 0     𝑡 ≥ 0                                                              (2)                                                                  

                          𝑢(𝑥, 0) = 𝜙(𝑥)   0 ≤ 𝑥 ≤ 𝑙                                                                       (3) 

Find control parameters, initial temperature 𝑔(𝑥) and the heat source 𝑓(𝑥, 𝑡) such that 

point evaluation 𝑢(𝑥0, 𝑡) tracks the desired signal 𝐹(𝑡)єℂ[0, 𝑇] satisfying the system: 

                       𝑢𝑡(𝑥, 𝑡) − 𝛼𝑢𝑥𝑥(𝑥, 𝑡) = 𝑓(𝑥, 𝑡)    0 < 𝑥 < 𝑙 , 𝑡 > 0                                  (4)                                  

                          𝑢(0, 𝑡) = 𝑢(𝑙, 𝑡) = 0     𝑡 ≥ 0                                                                   (5)                    

                          𝑢(𝑥, 0) = 𝑔(𝑥)       0 ≤ 𝑥 ≤ 𝑙                                                                    (6) 

Hence F(t) is a known function. In this research, we construct the control parameters, the 

initial condition, and source term so that the point evaluation at an internal point in the 

domain will track a known function. Finally, we validate our findings using the finite 

difference solver COMSOL as it provides better solution accuracy, consistency and easy 

meshing more efficiently and effectively. 

Methodology 

Consider the Fourier series representations of u(x,t) , f(x,t) and g(x) as follows. 

Since u(x,t) which solves Equation(4) depends on both time and space, it can be 

represented as a Fourier sine series,       𝑢(𝑥, 𝑡) = ∑ 𝑎𝑛(𝑡)sin (
𝑛𝜋𝑥

𝑙
)∞

𝑛=1                        (7)                                     

Notice that the u satisfy the boundary conditions in Eq.(5). Then the coefficient 𝑎𝑛(𝑡) is 

given by                      𝑎𝑛(𝑡) =
2

𝑙
∫ 𝑢(𝑥, 𝑡) sin (

𝑛𝜋𝑥

𝑙
) 𝑑𝑥.

𝑙

0
                                                   

We represented the right-hand side f(x,t) and the initial function g(x) in the same way as,    

𝑓(𝑥, 𝑡) = ∑ 𝑐𝑛(𝑡) sin (
𝑛𝜋𝑥

𝑙
)             ;          𝑐𝑛(𝑡) =

2

𝑙
∫ 𝑓(𝑥, 𝑡) sin (

𝑛𝜋𝑥

𝑙
) 𝑑𝑥.

𝑙

0
∞
𝑛=1               (8) 
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                                     𝑔(𝑥) = ∑ 𝑏𝑛 sin (
𝑛𝜋𝑥

𝑙
) .∞

𝑛=1                                                          (9) 

We setup the IVP for 𝑎𝑛(𝑡): 

First, we can differentiate Eq.(7) with respect to t and x. Then we can derive the following         

equations to 𝑢𝑡 , 𝑢𝑥, 𝑢𝑥𝑥 . 

                       𝑢𝑡(𝑥, 𝑡) = ∑ 𝑎𝑛
′ (𝑡) sin (

𝑛𝜋𝑥

𝑙
) .∞

𝑛=1                                                               (10)                                                                 

                          𝑢𝑥 = 𝑎𝑛(𝑡) ∑ cos (
𝑛𝜋𝑥

𝑙
) (

𝑛𝜋

𝑙
) .∞

𝑛=1                                                                            

                          𝑢𝑥𝑥 = −𝑎𝑛(𝑡) ∑ sin (
𝑛𝜋𝑥

𝑙
) (

𝑛𝜋

𝑙
)

2

.∞
𝑛=1                                                      (11) 

Plugging Equations (11), (10), (9), and (8) in Partial Differential Eq. (4), we can derive 

∑ 𝑎𝑛
′ (𝑡) sin (

𝑛𝜋𝑥

𝑙
) + 𝑎𝑛(𝑡) ∑ sin (

𝑛𝜋𝑥

𝑙
) (

𝑛𝜋

𝑙
)

2

= ∑ 𝑐𝑛(𝑡) sin (
𝑛𝜋𝑥

𝑙
) .∞

𝑛=1
∞
𝑛=1

∞
𝑛=1                (12) 

The above equation implies,             𝑐𝑛(𝑡) = 𝑎𝑛
′ (𝑡) + 𝑎𝑛(𝑡) (

𝑛𝜋

𝑙
)

2

  ,     𝑛 = 1,2,3 … … 

According to the initial condition in Eq.(6),  𝑢(𝑥, 0) = 𝑔(𝑥). Thus we can derive the 

following,                

                    ∑ 𝑎𝑛(0) sin (
𝑛𝜋𝑥

𝑙
) = ∑ 𝑏𝑛 sin (

𝑛𝜋𝑥

𝑙
) ,∞

𝑛=1
∞
𝑛=1  

                              𝑏𝑛 = 𝑎𝑛(0)                                                                                       (13) 

Then we solve the IVP Equation(13) and find 𝑐𝑛(𝑡) and 𝑏𝑛. Let 𝐹(𝑡)єℂ(ℝ, ℝ) for all   𝑡 >
0 be the reference signal to be tracked at the point 𝑥 = 𝑥0.Where 0 < 𝑥0 < 𝑙.  Next, we 

derive Equations for 𝑐𝑛(𝑡) and 𝑏𝑛 in terms of 𝐹(𝑡). Let F(t) be the temperature 

distribution (reference signal) to be tracked at 𝑥 = 𝑥0.Then, 

                𝑎𝑛(𝑡) =
2

𝑙
∫ 𝑢(𝑥0, 𝑡) sin (

𝑛𝜋𝑥0

𝑙
) 𝑑𝑥    ;   𝑎𝑛(𝑡) =

2

𝑙
∫ 𝐹(𝑡)sin (

𝑛𝜋𝑥0

𝑙
)

𝑙

0
𝑑𝑥

𝑙

0
                                                            

Finally, we have       𝑎𝑛(𝑡) = 2sin (
𝑛𝜋𝑥0

𝑙
)𝐹(𝑡)                                                               (14)                                                            

Differentiating the above 𝑎𝑛(𝑡)  w.r.t. t  and  plugging 𝑎𝑛(𝑡) and 𝑎𝑛
′ (𝑡) in IVP in Eq.(13) 

           𝑐𝑛(𝑡) = 2 sin (
𝑛𝜋𝑥0

𝑙
) 𝐹′(𝑡) + 2 (

𝑛𝜋

𝑙
)

2

sin (
𝑛𝜋𝑥0

𝑙
) 𝐹(𝑡).                                        (15)                                   

                  𝑏𝑛 = 𝑎𝑛(0) = 2 sin (
𝑛𝜋𝑥0

𝑙
) 𝐹(0), 𝑛 = 1,2,3 … ….                                         (16) 

Next, we prove the existence of one value for n. The orthogonal decomposition of f(x,t) 

can be written as 𝑓(𝑥, 𝑡) = 𝑐1𝜑1 + 𝑐2𝜑2 + ⋯ 

where,   𝑐𝑚 =
<𝜑𝑚,𝑓> 

<𝜑𝑚,𝜑𝑚>
    ;        𝜑𝑚 = sin (

𝑚𝜋𝑥

𝑙
) . 

 Hence               𝑓(𝑥, 𝑡) = ∑ 𝑐𝑛𝜑𝑛 = ∑
<𝜑𝑛,𝑓>

<𝜑𝑛,𝜑𝑛>
∞
𝑛=1

∞
𝑛=1 𝜑𝑛.            
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Since < 𝜑𝑛, 𝜑𝑚 > =  ∫ sin (
𝑛𝜋𝑥

𝑙
)

𝑙

0
sin (

𝑚𝜋𝑥

𝑙
) 𝑑𝑥 = 0     ⩝ 𝑥   𝑛 ≠ 𝑚 

We have,     < 𝑐1𝜑1 − 𝑓, 𝜑1 > = 0 , ⩝ 𝑥 

Finally, the above equation implies 𝑓(𝑥, 𝑡) = 𝑐1(𝑡) sin (
𝜋𝑥

𝑙
). 

Example 1: Tracking F(t)=sin(t) at 𝑥 = 𝑥0. 

Using the Eq.(15) Eq.(16) for 𝑏𝑛 and 𝑐𝑛 in the previous section, 

               𝑐1(𝑡) = 2 sin (
𝜋𝑥0

𝑙
) cos(𝑡) + 2 (

𝜋

𝑙
)

2

sin (
𝜋𝑥0

𝑙
) sin(𝑡).                                          (17)                                     

                       𝑏1 = 0                                                                                                         (18)                       

         𝑓(𝑥, 𝑡) = ∑ [2 sin (
𝜋𝑥0

𝑙
) cos(𝑡) + 2 (

𝜋

𝑙
)

2

sin (
𝜋𝑥0

𝑙
) sin(𝑡)] sin (

𝜋𝑥

𝑙
) .∞

𝑛=1              (19)            

               𝑔(𝑥) = 0.                                                                                                          (20) 

Example 2: Tracking F(t)=cos(t) at 𝑥 = 𝑥0. 

Substituting Eq.(15),Eq.(16) we can obtain 𝑐𝑛 and 𝑏𝑛 for this case, 

            𝑐1(𝑡) = −2 sin (
𝜋𝑥0

𝑙
) sin(𝑡) + 2 (

𝜋

𝑙
)

2

sin (
𝜋𝑥0

𝑙
) cos(𝑡).                                      (21)                                     

              𝑏1 = 2 sin (
𝜋𝑥0

𝑙
).                                                                                                (22)                    

          𝑓(𝑥, 𝑡) = ∑ [−2 sin (
𝜋𝑥0

𝑙
) sin(𝑡) + 2 (

𝜋

𝑙
)

2

sin (
𝜋𝑥0

𝑙
) cos (𝑡)]∞

𝑛=1 sin (
𝜋𝑥

𝑙
).           (23)                               

               𝑔(𝑥) = ∑ 2 sin (
𝜋𝑥0

𝑙
) sin (

𝜋𝑥

𝑙
) .∞

𝑛=1                                                                   (24) 

Example 3:  Tracking F(t)=4t at 𝑥 = 𝑥0, 

Then using the derived equations for 𝑏𝑛 and 𝑐𝑛, 

            𝑐1(𝑡) = 2 sin (
𝜋𝑥0

𝑙
) 4 + 2 (

𝜋

𝑙
)

2

sin (
𝜋𝑥0

𝑙
) 4𝑡.                                                      (25)                       

                   𝑏1 = 0                                                                                                           (26)                         

      𝑓(𝑥, 𝑡) = ∑ 8 [sin (
𝜋𝑥0

𝑙
) + (

𝜋

𝑙
)

2

sin (
𝜋𝑥0

𝑙
) 𝑡] sin (

𝜋𝑥

𝑙
) .∞

𝑛=1                                       (27)                       

             𝑔(𝑥) = 0.                                                                                                             (28) 

Results and Discussion 

We set F(t)=sin(t) and solve                                                                                                   

          𝑢𝑡(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) = 2 sin (
𝜋𝑥0

𝑙
) sin (

𝜋𝑥

𝑙
) [cos(𝑡) + sin (𝑡) (

𝜋

𝑙
)

2

].                                        

                         𝑢(𝑥, 0) = 0.                   𝑢(0, 𝑡) = 𝑢(𝑙, 𝑡) = 0 

On 𝑥є[0,1] in COMSOL.Then we tracked the temperature distribution at the point 

x=0.75. The measured output is the point evaluation at x=0.75. The figure1 illustrates the 

desired temperature distribution and the measured output at x=0.75 in one figure. The 
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figure1 shows that the desired temperature and the measured output overlap each other 

for the derived control parameters. 

                 

             

Figure 3. The graph of sin(t) and measured output at x=0.75. 

Next, we consider F(t)=cos(t) and solve the following system. 

               𝑢𝑡(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) = 2 sin (
𝜋𝑥0

𝑙
) sin (

𝜋𝑥

𝑙
) [cos(𝑡) (

𝜋

𝑙
)

2

− sin(𝑡)].                                

                 𝑢(𝑥, 0) = 2 sin (
𝜋𝑥0

𝑙
) sin (

𝜋𝑥

𝑙
) .                 𝑢(0, 𝑡) = 𝑢(𝑙, 𝑡) = 0. 

On 𝑥є[0,1] in COMSOL.Then we tracked measured output(point evaluation)  at x=0.75. 

The figure 2 shows desired temperature distribution and the measured output at x=0.75 

in one figure. The desired temperature and the measured output overlap each other for the 

derived control parameters as shown in figure2. 

              

Figure 4. The graph of cos(t) and the measured output at x=0.75. 



International Conference on Applied and Pure Sciences, 2021 

Faculty of Science, University of Kelaniya, Sri Lanka 

 

47 
 

Considering F(t)=4t we solve, 

               𝑢𝑡(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) = 8 sin (
𝜋𝑥0

𝑙
) sin (

𝜋𝑥

𝑙
) [1 + 𝑡 (

𝜋

𝑙
)

2

].                                                   

                  𝑢(𝑥, 0) = 0.                            𝑢(0, 𝑡) = 𝑢(𝑙, 𝑡) = 0. 

On 𝑥є[0,1] in COMSOL. The measured output is the point evaluation at x=0.25. The 

figure3 illustrates desired temperature distribution and the measured output at x=0.25 in 

one figure. The figure3 clearly shows that the desired temperature and the measured 

output overlap each other for the derived control parameters. 

               

Figure 5. The graph of 4t and the measured output at x=0.25. 

Conclusion 

In this research work, we have considered the Fourier method for solving the one-

dimensional parabolic inverse problem with Dirichlet boundary conditions where we first 

derived an ordinary differential equation for the Fourier coefficients. Then we expressed 

unknowns in our research problem, source term, and initial data in terms of those Fourier 

coefficients. Finally, we solved the heat equation on the one-dimension domain with the 

derived source term and the initial data. Furthermore, we validated that temperature 

distribution at internal points on the domain (x=0.25,x=0.75) tracked the harmonic and 

linear temperature distributions, using numerical simulations in COMSOL with the 

derived control parameters (source term and initial condition). 
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