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Abstract

Snakebite is the only WHO-listed, not infectious neglected tropical disease (NTD), although

its eco-epidemiology is similar to that of zoonotic infections: envenoming occurs after a

vertebrate host contacts a human. Accordingly, snakebite risk represents the interaction

between snake and human factors, but their quantification has been limited by data avail-

ability. Models of infectious disease transmission are instrumental for the mitigation of NTDs

and zoonoses. Here, we represented snake-human interactions with disease transmission

models to approximate geospatial estimates of snakebite incidence in Sri Lanka, a global

hotspot. Snakebites and envenomings are described by the product of snake and human

abundance, mirroring directly transmitted zoonoses. We found that human-snake contact

rates vary according to land cover (surrogate of occupation and socioeconomic status), the

impacts of humans and climate on snake abundance, and by snake species. Our findings

show that modelling snakebite as zoonosis provides a mechanistic eco-epidemiological

basis to understand snakebites, and the possible implications of global environmental and

demographic change for the burden of snakebite.

Author summary

Snakebite envenoming occurs after contact between two vertebrates, which makes it simi-

lar to some transmissible diseases. Based on such similarity, we used estimates of snakebite

incidence, snake abundance and biology, and surrogates of human occupational risks to

derive a mathematical expression that represents snakebite envenoming as human-snake

contacts. Our model explained risk variability very well. We found that snake and human
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abundance explain incidence estimates and that agriculture-linked occupations tend to

have more frequent contacts with snakes; and that snake abundance decreases with

increasing human population. Because snake abundance estimates and contact rates are

based on climate or land cover, we identify a pathway for land use change, global warming

and population growth to affect the epidemiology of snakebites.

Introduction

Snakebite envenoming causes acute life-threatening disease with long lasting consequences for

survivors [1]. By most recent estimates, up to 1.8 million people suffer from snakebite enven-

oming every year, of which 20,000–94, 000 die of the resulting illness [2]. Such a high burden

is increasingly recognised as a global health crisis and, in combination with its relative neglect

from a research perspective, has led to snakebite’s recent inclusion on the WHO list of class A

neglected tropical diseases (NTDs) [3], a first for a non-infectious disease, and to the develop-

ment of a global action plan to reduce its burden [4].

Mathematical modelling has been useful for identifying processes that affect the incidence of

NTDs and managing them to reduce their burden [5,6]. For instance, modelling revealed that

only treating confirmed cases of lymphatic filariasis while neglecting vector and alternative host

populations facilitated low-level endemic persistence and the evolution of drug resistant para-

sites, which together hampered long-term mitigation (reviewed in [7]). Models have also been

instrumental for testing and implementing interventions for rabies [8]. The spillover of rabies

from its zoonotic mammalian host, mostly as a result of a bite from an infected canine, is a

relatively simple transmission process that can be represented with epidemiological models.

Rabies, the above example, and snakebite envenoming have some striking similarities. That

is, a pathogenic agent—venom—is transmitted to humans after a contact event with a verte-

brate host. Despite this similarity, mathematical models of snakebite are scarce (but see [9]),

limiting the extent to which mitigation strategies can be assessed prior to field implementation,

for example. In contrast, pharmaceutical solutions still dominate mainstream snakebite miti-

gation and research agendas (e. g., Snakebites: making treatments safe, effective and accessible

| Wellcome; [10]). The snakebite roadmap aims to reduce the number of snakebite deaths and

disabilities by 50% by 2030 [11], and identifies novel methods and tools to better understand

snakebite epidemiology as a priority to help achieve this goal. Improved epidemiological mod-

els for snakebite could fill a major current void in understanding snakebite, improving mitiga-

tion efforts and maximising the efficacy of post-bite treatment systems (e.g., directing

antivenom supplies efficiently) [5,12].

Mechanistic representation of zoonotic spillover predicates that transmission depends on

three major principles [13,14]: 1) reservoir and spillover hosts coinciding in time and space (e.g.

[15]), 2) the disease prevalence and/or pathogen shedding in reservoir hosts depending on the

contact route necessary (e.g. [16]), and 3) the spillover host developing disease when it is infected.

Risk mapping studies of snakebites indicate that there are analogous factors relating to these

mechanisms for zoonotic spillover. First, models of snake distribution and abundance, and maps

of human population density can be used to represent human-snake spatial [17,18] and temporal

[19] alignment, which underlies human-snake contact. Second, the equivalent of pathogen preva-

lence (i.e,. possessing venom) is 100% among venomous snakes, hence the likelihood of transmis-

sion (envenoming) is rather a function of how likely it is that venom is delivered during a bite (as

opposed to dry bites), which varies considerably between venomous species [20]. And third, host

susceptibility relates to the effect of venoms on the human body [21].
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Exposure factors and post exposure vulnerabilities (e.g. occupational, cultural and socioeco-

nomic) may mediate these steps to further influence outcomes and ultimately the overall bur-

den in a population [22–24]. For instance, working and living in a agrarian setting could

increase spatio-temporal alignment; poverty could limit the use of protective clothing and

also exposure to snakebites due to fragile dwellings made of locally found materials, that can

increase the probability of envenoming inside houses given a bite; and cultural differences

could influence healthcare seeking behaviour, which could determine the toll on the body dur-

ing an envenoming event. Fig 1, following Plowright et al.,’s [13] framework for zoonotic spill-

over, represents such a conceptual arrangement as a sieve that starts with snake diversity,

distribution, abundance, behaviour, venom toxicity, and its overlap with humans and individ-

ual risk/susceptibility factors.

Whereas the majority of NTDs comprise transmission of a pathogenic microorganism (or a

complex of microorganism species e.g., Leishmania spp.) from one or more reservoir and/or

vector hosts to humans, the transmission dynamics of snakebite involve envenoming of

humans (or other victim, such as livestock) from one or more venomous snake (‘reservoir’)

species. In systems in which only one species dominates the snakebite burden, an appropri-

ately simple single-species model has been shown to successfully predict the geographical

Fig 1. The snakebite sieve, an adaptation of the conceptual framework for zoonoses of Plowright et al. [13], shows how different factors align and result

in what we recognise as snakebite burden. Species and occupational identities are meant to be schematic and do not represent the characteristics of our study

system.

https://doi.org/10.1371/journal.pntd.0009867.g001
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variability of snakebite incidence. For instance, Bravo-Vega et al. [9] modelled the frequency

of encounter with Bothrops asper as a function of environmental suitability to predict snakebite

incidence in Costa Rica. However, such models have not been applied in settings where multi-

ple species bite and influence variability of snakebite envenoming incidence in space and in

time. For example, the ‘big four’ species considerably shape the burden of snakebite envenom-

ing in South Asia [25], while Goldstein et al. [26] show that burden dynamics can be complex

over time due to the influence of multiple biting species and the environment on the behaviour

of both humans and snakes.

In the present study, we sought to capitalise on recent snakebite research developments in

incidence mapping [23], snake distributional ecology [18], and zoonotic spillover theory [13]

to develop a novel mechanistic epidemiological framework representing the biological compo-

nents of snakebite. Specifically, we explored the extent to which various types of models typi-

cally applied to directly transmitted infectious diseases explain the geography of snakebite and

envenoming incidence estimates. We use the island nation of Sri Lanka, a snakebite hotspot,

as a model system given that, as of the time of writing, it is the only high snakebite burden

region for which high quality/high resolution country-wide data exist to formulate, test and

compare models on snakebite and envenoming incidences. In addition to demonstrating suc-

cessful risk mapping, we show that geographical patterns of incidence arise from dynamic

environmental socio-ecological processes that include effects of climate, occupational risk fac-

tors, land use and its changes and direct human impacts on snake populations. Recasting

snakebite as a zoonosis and formally applying conventional epidemiological models provides a

novel way forward in understanding snakebite epidemiology, which in future studies would

allow us to better anticipate risks and potentially help achieve ambitious mitigation targets

[11] in a rapidly changing world.

Methods

We first identified a series of mathematical formulations for human-snake contacts to represent

snakebite as a zoonotic disease transmission process. In conventional infectious disease trans-

mission models, disease spread is considered to be frequency-, density-dependent or a mixture

of both. When frequency-dependent, the per-capita rate at which susceptible individuals

become infected depends on pathogen prevalence in the population. When density-dependent,

transmission increases with infected host density. For snakebites, pathogen prevalence for a

given reservoir is 100% (all individuals of a venomous species carry venom; Fig 1). Frequency

dependence might function for snakebites in the presence of dry bites, such as occurs when

venom glands are depleted [20]. However, its causes are still poorly understood to be incorpo-

rated in a process-based model. The remaining density-dependent contact formulations

(Table 1) summarise different mixing dynamics between humans and snakes, resulting in func-

tional relationships between snake abundance and snakebite incidence that range from linear

to asymptotic to bell-shaped [27]. To test the models’ abilities to explain snakebites, we trans-

formed them from continuous to discrete time, representing annual trends without seasonality,

and estimated their parameters regressing the estimated snakebite and envenoming incidence

rates from Ediriweera et al. [23] against each functional relationship. As Ediriweera et al. [23]

estimates are spatially explicit we first fitted a model ignoring the spatial component, and then

we fitted the same models with a conditional autoregressive random effect.

Data

Data used for fitting and testing models and estimating parameters were two published data-

sets (rasters) of the spatial distribution of snakebite and envenoming incidence rates, estimated
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with model-based geostatistics applied to a country-wide community survey of ~0.8% of the

Sri Lankan population [23], under the assumption that these estimates represent the ground

truth. The response variables for regressing the functional relationships were the number of

snakebite and envenoming cases, respectively, found by multiplying the mapped incidence

rates by human population density (described below). The independent data used to explain

incidence rates and which represent the causal snakebite factors (Fig 1) were:

Distribution and abundance of reservoir hosts. Raster images of the abundance patterns

of the most medically relevant venomous snakes of Sri Lanka (three elapids and four vipers),

estimated with point process models as functions of the environment (climate, topography

and land cover), and adjusted for species’ relative abundances. Species records to build abun-

dance models span several decades of fieldwork across the island [28].

Distribution and abundance of spillover hosts. Raster image of human population den-

sity raster layer from 2010 (closest point in time prior to the snakebite survey period of August

2012 –June 2013; [23]) obtained from the Gridded population of the world (GPW v4) hosted

by the Socioeconomic Data and Applications Center (SEDAC, https://sedac.ciesin.columbia.

edu).

Spillover host exposure risk factors. Raster image of land cover representing the pre-

dominant classes forest, degraded forest, agriculture, urban and tea (see ‘Deriving land cover

data’ below for source details). Land cover correlates well with socioeconomic status and pre-

dominant occupation [29], which are the primary human-related risk factors [22] and which

in the model represent different risk categories via model parameters such as the human-snake

contact rate.

Data formatting

Prior to analysis we homogenised and synchronised the resolution of all data to a common

grid comprising 5 × 5 km pixels (25 km2) projected to the datum of Sri Lanka (SLD99, EPSG

5235). Synchronising data allowed matching data points to regress the number of snakebite

and envenoming cases against human, snake and land cover data according to the model

Table 1. Disease transmission terms tested representing functional relationships between snakes and humans and resulting in snakebite. Each term has been previ-

ously applied in various settings for infectious disease studies so here we list only the earliest reference for each. DIC = deviance information criterion, pD = potential

degrees of freedom, H = humans, S = snakes, β = contact rate. Missing DIC values means that we could not obtain a converged model, so DIC values were not comparable

with those of converged models.

Tranmission term Discrete time form F (H, S, θ) Name and description Source DIC, pD�

β HS 1 –exp(-βS) Simple mass action. H × S is the total number of possible contacts [30] 17484,

20.02

β HpSq 1 –exp(-β Hp– 1Sq) Power. Similar to mass action, but p and q take values 0, 1, and increase or decrease

the number of contacts of S in relation to H and vice-versa.

[42] - - -

β H (S—H/qh) 1—exp(-β (S/H– 1/qh)) Refuge effect on S. Parameter q represents the fraction of snakes exposed to humans

depending on the number of humans present

[43] - - -

β S (H—S/qs) 1—exp(-β S (1 –S/(qs�H))) Refuge effect on H. Parameter q represents the fraction of humans exposed to

snakes depending on the number of snakes present

[43] 17062,

26.0
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[44] - - -

https://doi.org/10.1371/journal.pntd.0009867.t001
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tested. A 5 × 5 km grid was chosen to facilitate computation and retain a reasonable degree of

biological detail relevant to the study aims. Human population density and snake abundance

estimates were upscaled from their original 1 km resolution by aggregation, summing the val-

ues of adjacent cells by a factor of 5 grid cells along longitude and latitude. Snakebite and

envenoming incidence layers were resampled from their original ~1.5 × 3 km to the target res-

olution using weighted bilinear interpolation. The land cover layer was upscaled from 30 m to

5 km by majority vote per pixel (land cover class was assigned to each grid cell based on the

most common class among the ~27000 30 m grid cells contained in each 5 × 5 km pixel).

Deriving land cover data

The five categories considered for the analyses were derived using unsupervised isoclustering

and visual interpretation of remotely sensed data for the year 2010 (Landsat surface reflec-

tance, original Landsat optical bands and NDVI). The resulting 30 m land cover maps were

validated using 600 randomly generated points across Sri Lanka, with which we estimated a

classification accuracy of>95%.

Functional relationships for human-snake contacts

The simplest formulation of human-snake contact is the mass action model, whereby the total

number of possible different contacts is found by No. Humans × No. Snakes. This formulation

is widely used for zoonotic transmission, and the simplest model relevant to snakebites is the

susceptible-bitten model [30]. Here, the growth of bitten humans (Hb) per time unit (dHb/dt) is

proportional to the number of possible contacts between susceptible humans (Hs) snakes (S):

dHs

dt
¼ � bHsS ð1:1Þ

dHb

dt
¼ bHsS ð1:2Þ

where β is the human-snake contact rate. This model assumes that time is continuous, how-

ever snakebite incidence data has a resolution of one year, for which discrete-time models are

more adequate. The continuous (left) and discrete-time (right) models for snakebite based on

the SB model are:

dHs

dt
¼ � bHsS) Htþ1 ¼ Hs;t � Hs;texpð� bSÞ ð1:3Þ

dHb

dt
¼ bHsS) Hb;tþ1 ¼ Hb;t þHs;tð1 � expð� bSÞÞ ð1:4Þ

The tested human-snake contact formulations are given in Table 1 in their original and dis-

cretised forms. We held no a priori reason to favour one model over another, so we explored

all of their relative abilities to explain snakebite and envenoming incidence.

Model implementation and selection

Ediriweera et al., [23] report both snakebite and snakebite envenoming incidence nationally

for Sri Lanka, which here we refer to as two measures of risk, Snakebite and Envenoming. The

former represents all confirmed contacts with snakes with and without envenoming, and the

latter are the contacts which resulted in envenoming illness. To model envenoming we used

two approaches. First, we modelled snakebite as a contact process with the functional
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relationships and assumed that envenoming is a subset or secondary event, whose probability

of occurring was another function of snake abundance. Second, we treated envenoming cases

alone in the same way we treated snakebites (see below).

To estimate model parameters we regressed the number of snakebite or envenoming cases

against the functional relationships (Table 1) using Markov Chain Monte Carlo (MCMC) sam-

pling in JAGS [31] via R2Jags package in R [32]. Prior to implementation, the contact pro-

cesses (Table 1, column 1) were transformed from their continuous-time form into discrete-

time, representing the probability that there were any snakebites during the study period (t, t
+1). The discrete-time form of Eq 1.4 to represent snakebite incidence is [33]:

Hb; tþ1 � Hb; t ¼ Hs; t � ð1 � expð� bStÞÞ ð2:1Þ

Therefore, the probability that there are any snakebites when during one year (t, t +1) is:

Pðt; t þ 1Þ ¼
Hb;tþ1 � Hb;t

Hs
¼ 1 � expð� bSÞ

To summarise, after taking Hs from the right to the left hand side of the equations, snakebite

or envenoming incidence is proportional to a function of snakes and/or humans, F (H, S) = P
(t, t +1). More generally the number of snake-bitten people is:

Hb ¼ Hs � P ðt; t þ 1Þ

To select a more appropriate model in the MCMC sampling process we treated snakebite

and envenoming cases as either Poisson:

Hb� � PoissonðHbÞ

or Negative Binomial, parameterised by PN and dispersion parameter r:

r � unifð0; 50Þ

PN ¼
r

r þ Hb

Hb� � NegBinðPN ; rÞ

in order to use the best statistical distribution for the number of cases.

Human-snake contact rates

To estimate effects of the different snake species and human-related factors, the contact rate β
was decomposed into different aspects. The first aspect included the estimation of one contact

rate per snake species, such that St from Eq 2.1, for instance is:

St ¼
X

Bs � ðA;EÞs � Ss

the sum of the individual snake species abundances multiplied by their specific human-snake

contact rates Bs, and species aggressiveness or envenoming-severity indices ((A, E)s; [28]).

Each index was included depending on whether the contact process analysed was snakebite

(As) or envenoming (As × Es). This means that the absolute magnitude of contact rate for

snakebite is Bs × As and for envenoming is Bs × As × Es. Thus Bs represents other factors not

related to aggressive behaviour (As) or envenoming severity (Es) that influence human-snake

interactions and their outcomes.
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The second component of the decomposed contact rates are a series of functions of human

population density (number of people per grid cell) that attempt to adjust total snake abun-

dance in relation to humans, since high human population density is a well known threatening

process for biodiversity [34,35]. The functions of human population density were:

bðHÞ ¼

expðb0 þ b1HÞ

expðb0 þ b1H2Þ

expðb0 þ b1H þ b2H2Þ

8
><

>:
ð2:2Þ

In this approach, if β0, 1, 2 coefficients are drawn from a normal distribution in the MCMC

sampling process it is possible to model the negative effect of humans on incidence, whilst

retaining a positive relationship between the total number of cases and human population den-

sity since β (H) will always be positive. To estimate human susceptibility in the models we cate-

gorised their parameters (β and 2.2) in five land cover classes.

To summarise, we estimated parameters and measured the ability to represent snakebite

and envenoming of the models with and without the functions of human population density

(2.2), with and without its parameters categorised by land cover, and estimating a global β with

and without categorisation by land cover.

Model of envenoming probability

For the approach of treating envenoming as an event that follows a snakebite, we treated the

number of envenoming cases as the subset of snakebites that result in envenoming. Therefore,

the number of envenoming cases is:

Henvenomed ¼ Hb � Penv

where Henvenomed is the number of envenoming cases and Penv is the probability that a snake-

bite results in envenoming, which we derived from an expert-collated index of species’ enven-

oming severity (Table 2; [28]). To estimate Penv we treated the number of envenoming cases as

Poisson or Negative binomial, but estimated the probability logistically using two model-

Table 2. Parameter estimates for the mass action models for snakebites (median and standard deviation). βi, l parameters are those of the function of human popula-

tion density to adjust total snake abundance in relation to humans in each land cover class. rl are the negative binomial dispersion parameter for each land cover class. Bs
are the estimated contact rates for each snake species after adjusting the point intensities for relative abundances and weighting for aggressiveness behaviour. The star �

indicates the parameters whose 95% credible intervals do not contain zero (only relevant to βi, l). Rows with grey background show estimates for the spatial version of the

model. H. spp corresponds to Hypnale spp, and T. trig. to T. trigonocephalus. θLC denotes parameters related to land cover and θSpp denotes parameters for snake

species.

θLC Agriculture Degraded Forest Tea Urban

β0, l -12.9 (0.19)� -12.84 (0.2)� -13.18 (0.21)� -11.91 (0.26)� -11.27 (0.61)�

-12.9 (0.11)� -12.87 (0.11)� -13.11 (0.12)� -11.84 (0.15)� -11.32 (0.2)�

β1, l -0.004 (0.001)� -0.005 (0.001)� -0.000 (0.002) -0.017 (0.002)� -0.028 (0.002)�

-0.004 (0.001)� -0.006 (0.001)� -0.001 (0.001) -0.018 (0.001)� -0.027 (0.002)�

rl 23,70 (2.95) 16.82 (1,13) 9.32 (1,16) 7,18 (0.69) 12,10 (4.52)

34.47 (2.33) 23.56 (0.91) 13.25 (0.93) 9.39 (0.56) 18.85 (7.02)

θSpp B. caeruleus B. ceylonicus D. russelli E. carinatus H. spp N. naja T. trig.

BS 3.48 (0.56) 5.30 (2.85) 1.17 (0.37) 2.99 (1.07) 0.036 (0.02) 8.48 (1.29) 0.17 (0.16)

4.34 (0.48) 5.58 (2.26) 1.72 (0.39) 2.81 (0.97) 0.047 (0.015) 3.51 (0.69) 0.14 (0.11)

https://doi.org/10.1371/journal.pntd.0009867.t002
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formulas:

log
Penv

1 � Penv

� �

¼
X

Bs � Es � S0s ð3:1Þ

log
Penv

1 � Penv

� �

¼ BLC þ
X

Bs � Es � S0s ð3:2Þ

where, in both equations, Bs is the statistical effect of snake species s, Es is the index of enven-

oming severity (Table 2) and S’s is snake species s after applying the correction of abundance in

relation to humans (β (H)). In model formula 3.2, the term BLC is a random intercept for land

cover class. The criteria to select one formula over the other was minimisation of the deviance

information criterion (DIC) and convergence [36].

Model selection

We first implemented all functional relationship models and ran short MCMC chains of 10–

50 K iterations to discard those with erratic sampling behaviour, poor chain mixing or consis-

tently higher DIC than other functions. Once we obtained a more manageable subset of mod-

els we ran the full MCMC chains of up to 750,000 iterations and then checked for convergence

with the Gelman diagnostic test [37]. With the latter we made sure that posteriors are unre-

lated to starting prior values (ratio of between and within chain variances should approach

one). Finally, we analysed the spatial pattern and statistical distribution of the residuals by sub-

tracting the median of posterior samples with snakebite and envenoming incidence data.

The criteria to select one functional relationship over another were: 1) ease of parameter

estimation and convergence of MCMC chains; 2) adequate reproduction of the spatial pattern

of raw number of snakebites and envenomings and their annual incidence rates, by measuring

the spatial association of the predictions with a modified T-test for spatially autocorrelated

data [38]; 3) minimising the DIC; and 4) adequate representation of the statistical distribution

of the snakebite and envenoming data using quantile-quantile plots.

Model with spatial effects

To fit the models with spatial effects we used the mean and standard deviation estimates of the

non-spatial version as parameter priors for the main effects β0, β1, and BS to ease convergence.

Random effects for the above models were incorporated as a log-linear random intercept for

the number of predicted cases:

logHb ¼ logðH � FðH; SÞÞ þ ri

This means that ρ was sampled from a conditional autoregressive normal distribution

where each ρi is proportional to the average ρ-i of its immediate neighbours in a queen-type

neighbourhood. These final models were fitted with Nimble [39] instead of JAGS. Geographi-

cal data were manipulated with the raster and rgdal R packages [40,41].

Results

The selected models reproduced well the magnitude and distribution of both snakebite and

envenoming incidence rates observed in Ediriweera et al., [23]. National snakebite and enven-

oming incidence patterns were best predicted by first modelling snakebites with the functional

relationship based on simple mass action (Table 1) and then estimating the probability that a

snakebite results in envenoming using the land cover random-intercept model (Eq 3.2).

PLOS NEGLECTED TROPICAL DISEASES Better understanding snakebites using zoonotic transmissin models

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009867 May 12, 2022 9 / 20

https://doi.org/10.1371/journal.pntd.0009867


Snakebites model

Of the contact formulations listed in Table 1, the simple mass action (βSH) and refuge effect

on humans (βS (H—S/q)) were the best performing models, with the lowest deviance informa-

tion criterion (DIC; Table 1). The refuge effect model had lower DIC than the simple mass

action (Table 1) and higher correlation with the snakebites and incidence data (refuge effect,

r = 0.67, d.f. = 128, P = 0; simple mass action, r = 0.61; d.f. = 137; P = 0), suggesting at face

value a better fit. We considered that the remaining formulated models were all unsuitable as

we failed to obtain reliable parameter estimates due to lack of MCMC convergence.

To select one model over another as the better one, we also took into account the statistical

distribution of predicted incidence rates. The statistical distribution of the incidence rates pro-

duced by the refuge effect model was very different to the original incidence rate distribution

(S1 Fig). Therefore, we chose the simple mass action model. The number of snakebites and

incidence patterns produced by this model were qualitatively very similar and had a statistical

distribution nearly identical to that of the data (S1 and S2 Figs).

The spatial version of the simple mass action model converged with 1M iterations, and had

an even higher correlation with Ediriweera et al. [23]’s estimates, r = 0.87 (d. f. = 81, P = 0) for

incidence and r = 0.97 (d. f. = 29, P = 0) for the number of bites (Fig 2).

The decomposition of contact rates that worked best was estimating a contact rate for each

snake species and correcting snake abundance in relation to human population density by

land cover class and log-transforming human population density:

bðH; LÞ ¼ expðb0ðlÞ þ b1ðlÞ lnðHÞ
2
Þ ð4:1Þ

All the parameters of the spatial and non-spatial simple mass action model converged

(Table 2) and did not exceed the very strict threshold of 1.05 of the Gelman test (very similar

variances between and within chains; S1 Table). The estimated effects of humans on snake

abundance resulted in different responses of incidence rates to human population and snake

abundance in each land cover class (Fig 3).

Model parameters

Parameters of the correction of snake abundance in relation to human population density (β0

(l) and β1(l), Eq 4.1) were all significantly negative (Table 2), indicating that humans tend to

decrease snake abundance in all land cover classes. Also, given significant differences between

land cover classes, the effect of humans on snakes depends on predominant land cover class.

The largest effect was estimated for tea and urban cover (snakes decrease faster with human

population density), intermediate in forest and degraded forest, and smallest in agriculture
(snakes decrease the least with human population density, Table 2).

Regarding individual species’ contact rates, the Indian cobra (Naja naja) had the highest

estimated rate, followed by the Ceylon krait (Bungarus ceylonicus) and the common krait (B.

caeruleus). The lowest contact rate was estimated for the hump-nosed viper (Hypnale spp).

These contact rates showed no relationship with species’ relative abundances, indicating that

factors not represented in the decomposed contact rates (i.e., frequency of venom injection,

time of activity aligned with human activities) are critical but unobserved determinants of risk

patterns. Note, that the estimated rates are not statements of how frequently humans encoun-

ter them. Estimated parameters should only be interpreted as indices of species’ importance

for snakebites relative to their abundance and that of humans where they occur. Also, these

parameters are negatively correlated with those estimated to adjust abundance in relation to

humans. Every order of magnitude of increase in the size of the Bs contact rates must be
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Fig 2. Snakebite patterns predicted by the spatial model (median of posterior estimates). Insets in the top right

corner of each map show a scatter plot of our model estimates and Ediriweera et al. [23]. Right hand side panels, from

top to bottom show the autoregressive random effects, root mean square error for each Sri Lankan district between our

model and data used, and the residuals with original survey data analysed by Ediriweera et al. [23].

https://doi.org/10.1371/journal.pntd.0009867.g002
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accompanied by an absolute decrease in log-scale of the value of β0(l) parameter of Eq 4.1 (e.g.

Bs × 10! β0(l)−log(10), or Bs� 10! β0(l) + log(10)), allowing the interpretations above for

the individual species. The magnitude of these parameters indicates the average number of

snakes in logarithmic scale that are lost for every human, resulting in faster declines in urban
land cover, and slowest in agriculture (Table 2). The effect of both humans and snakes on

snakebite incidence in each land cover class is represented visually in Fig 3.

Fig 3. Partial responses of snakebite incidence to human population density and snake abundance per land cover

class in the model of snakebites. The contour lines in each 2D plot indicate the expected incidence level highlighted

with the colour scale at that combination of human population and snake abundance.

https://doi.org/10.1371/journal.pntd.0009867.g003
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Envenoming model

The fact that the random-intercept envenoming model (Eq 3.2) was the more adequate, indi-

cated that land cover influenced the probability that a snakebite resulted in envenoming. The

correlation between envenoming incidence predicted by the spatial model and the data was

r = 0.85 (d. f. = 23, P = 0; Fig 4, right panel) and for the number of envenoming cases was

r = 0.93 (d.f. = 9, P = 0; Fig 4, top left panel). Convergence statistics for the spatial model are

given in S2 Table, S3 and S4 Figs.

The snake species that had the largest significantly positive fitted effect on the probability of

envenoming was Bungarus caeruleus, indicating that this species explains most of the spatial

heterogeneity of the probability that bites result in envenoming in Sri Lanka (Table 3). D. rus-
sellii and N. naja also had significant effects in the outcome of snakebites but were significantly

negative, indicating that risk of envenoming after a bite decreased with their predicted abun-

dances (we address this counter-intuitive result in the Discussion). The remaining species’

effects were not significantly different from zero, indicating that their contributions towards

envenoming cannot be distinguished from random (Table 3).

Land cover classes also had significant effects on the probability that snakebites resulted in

envenoming. Agriculture, had the largest significantly positive effect followed by urban.

Degraded forest had the largest significantly negative effect, followed by tea. The only land

cover class with a non-significant effect was forest, which suggested that envenoming after a

snakebite is more likely to be a function of the biting snake than of the environmental or social

context of snake-bitten people in forest environments (Table 3, and see Discussion on the role

of land cover).

Discussion

Mathematical models have been critical tools for understanding and controlling the transmis-

sion of zoonotic diseases, but despite many ecological and epidemiological similarities few

such models exist for snakebite (e. g. [9]). Here, we mapped snakebite and envenoming inci-

dence using a mathematical model that represents human-snake interactions and their out-

comes, adapting a mass action model usually applied to the transmission of infectious diseases

[30]. We treated venom as pathogenic agent transmitted between venomous snakes and sus-

ceptible humans, and tested various functional relationships describing the human-snake con-

tact process and its outcomes. Incidence rates were successfully mapped by estimating contact

rates between all medically relevant snakes of Sri Lanka and humans, and by accounting for

human and snake factors known to be important determinants of snakebite and envenoming

incidence. Human factors (social, economic and cultural) were included categorising parame-

ters by land cover serving as a socio-economic proxy [29]. Snake factors included biological

characteristics of the different species, like aggressiveness and severity of the envenoming ill-

ness produced by its bite. Furthermore, parameters in the model are sensitive to climate, land

cover and topography via their effects on snake population estimates [28]. As such, we have

developed a generalisable epidemiological model for snakebite that could be transferrable

(given local data) to future environmental conditions.

Predicting spatial and temporal patterns (including future changes) of snakebite risk is pos-

sible with purely statistical methods or by focusing only on one or two components of snake-

bite risk (e.g, [18,45]). An advantage of our approach, however, is that it is process-based and

generalisable, explicitly capturing the relevant snakebite processes (e.g., human-snake contact

patterns, biological traits of venomous species) to predict epidemiologically meaningful mea-

sures of snakebite risk. Such an approach may be more transferrable (i.e., when forecasting

burden in other regions) and better suited to forecasting impacts of global change (e.g.,
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Fig 4. Envenoming patterns predicted by the spatial model of the probability that a bite results in envenoming

(median of posterior estimates). The top right corner of the left side maps show the relationship with the data used to

fit the models, and the correlation coefficient adjusted for spatial autocorrelation. Right hand side panels, from top to

bottom show the conditional autoregressive random effects, root mean square error for each Sri Lankan district

between our model and data used, and the residuals with the original survey data analysed by Ediriweera et al. [23].

https://doi.org/10.1371/journal.pntd.0009867.g004
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including climate change, land-use change and socio-economic development), where a num-

ber of complex and potentially interactive mechanisms could push burden in different direc-

tions. However, the success of such applications still depends on the availability of relevant

data to parameterise the model. The raw material to build our model were snake occurrence

records and behavioural trait data [28]. Improving and applying similar frameworks in other

regions therefore requires reliable occurrence data in relation to human settlements and

improved ecological information on venomous snakes [28,46]., both of which can be regarded

as high priorities for future work [47].

To the best of our knowledge, the only previous study of a mathematical model for snake-

bite comparable to ours, is Bravo-Vega et al. [9]. We considerably extend their approach by

decomposing contact rates to incorporate both human and snake factors. The first snake

aspect of the decomposed contact rate β represents known (aggressiveness–As−and envenom-

ing–Es−indices) and unknown biological aspects (estimated statistically) of multiple species.

The unknown estimated snake factors are likely related to the alignment of human-snake

activity periods (Table 2 for snakebite model; [26]) and species’ propensities to inject venom

during a bite (Table 3 for envenoming model; [20,48]). Also, the estimated parameters summa-

rise snake species’ biologies and how these relate to human social, economic, occupational and

cultural aspects relevant for snakebite epidemiology. For instance, rice paddy farmers are

more susceptible to Russel’s viper bites (Daboia russelii) because rice is usually harvested bare-

foot in Sri Lanka [49,50]; common krait (Bungarus caeruleus) bites occur among the poorest of

the poor while victims are asleep on the floor [49]; while Hypnale spp. envenoming victims are

mostly women who are traditionally in charge of home garden maintenance where this species

inhabits leaf litter [51]. These examples show how species’ effects on snakebite are intertwined

with human socioeconomic and cultural factors.

The second aspect of the decomposed contact rate was the adjustment of snake abundance

as a function of land cover and human population density. Here, land cover may represent

predominant occupation and socioeconomic status [29], both of which are known to be

important snakebite risk factors [22]. Furthermore, we found that the probability that snake-

bites result in envenoming (Table 3) is also significantly influenced by land cover, especially in

urban and agricultural areas. The latter is supported by empirical evidence, as

agricultural workers are at greatest risk of snakebite envenoming [22,52]. Consequently, the

estimated effects by land cover class summarise snake responses to humans, and effects of

human factors such as agricultural occupation and economic status on snakebite and enven-

oming incidences. All of these characteristics give our model unparalleled forecasting capabili-

ties to close the gap between public health, ecosystem conservation and sustainability.

In contrast with the conceptual and theoretical strengths of our approach, important ques-

tions arise to address in future work, for instance: 1) should models be developed with field

Table 3. Parameter estimates of the model for probability of envenoming (median and standard deviation). Intercept are the estimated effects of each land cover, and

Bs are snake species’ effects. The � symbol indicates that the 95% credible intervals of posterior samples do not contain zero. Rows with grey background show estimates for

the spatial version of the model. H. spp corresponds to Hypnale spp, and T. trig. to T. trigonocephalus. θLC denotes parameters related to land cover and θSpp denotes

parameters for snake species. Negative binomial parameter r estimates were 18.59 (1.09) and 49.69 (0.41) for the non-spatial and spatial models respectively.

θLC Agriculture Degraded Forest Tea Urban

Int 0.255 (0.07)� -0.394 (0.05)� 0.056 (0.07) -0.72 (0.04)� 0.59 (0.17)�

-0.05 (0.04) -0.33 (0.03) � -0.23 (0.05)� -0.48 (0.03) � 0.53 (0.11)�

θSpp B. caeruleus B. ceylonicus D. russelli E. carinatus H. spp N. naja T.trig.

BS 280.14 (13.99)� -15.77 (32.12) -97.34 (28.4)� 5.49 (31.91) -24.546 (23.74) -290.34 (29.84)� -2.88 (31.80)

197.88 (13.41)� -3.86 (31.68) -165.129 (25.61)� 5.22 (31.98) -34.24 (19.77) -373.43 (27.66) � -1.64 (31.59)

https://doi.org/10.1371/journal.pntd.0009867.t003
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data instead of estimates? 2) How does uncertainty and artefacts of incidence estimates affect

selection and estimated parameters of our model? 3) Why do highly medically-important spe-

cies decrease the probability that bites are envenoming according to parameter estimates? For

the first question, we infer that a suitable model for field-collected data may be simpler than

ours, for which snake abundance estimates in relation to humans should be more robust than

currently available [28]. The second point is likely to affect uncertainty of our results, but we

interpret the very high similarity between results and estimates as an indication of robustness

because most data were independent, apart from human population density, which we dis-

cussed above [23]. Finally the negative coefficients estimated for D. russelii and N. naja mean

that, in average, the probability that a bite results in envenoming decreases at increasing abun-

dance of these speceis. However the lack of statistical significance of the estimates (credible

intervals contain zero, Table 3), reflect a lack of explanatory power of the spatial heterogeneity,

not a lack of biological relevance [53]. Therefore, the contradictory estimates from an epidemi-

ological basis result from the higher envenoming incidence in east than west Sri Lanka (Fig 4)

because both D. russelli and N. Naja are nearly equally abundant on both sides [28]. An alter-

native ecological explanation for the estimated negative effects for these two very medically-

relevant species could arise if the predicted abundances of N. naja and D. russelli actually serve

as proxies for the abundances of non-envenoming species. Abundance surrogacy is relatively

common among habitat generalists [54] and non-envenoming snakes are commonly involved

in snakebite cases [55], resulting in decreasing risk with the abundance of those non-medically

relevant species. In conclusion, given these population-level uncertainties related to the iden-

tity of the biting snakes, adequate clinical management in case of a bite should of course be

based on expertise and careful clinical evaluation of the envenoming disease.

With careful consideration of the strengths and weaknesses of our approach, we encourage

applying and testing our framework in data-poor geographical areas for predicting risk in the

absence of other data (e.g., national community survey data) or for testing mitigation interven-

tions. Doing so, however, does require some baseline data as inputs. As mentioned above, the

first requirement is a collection of geographical occurrence data of venomous snakes to esti-

mate abundance patterns. Methods and concepts for the analysis of this kind of data in relation

to the environment are well established and are described elsewhere (e. g. [56]). Here we used

point process models (PPMs) for this purpose given important limitations noted for other

common distribution modelling methods (e.g., Maxent) [28,57]. Second is to include some

key snake biological/behavioural characteristics for the decomposed contact rates. Relevant

traits include aggressiveness, overlap of activity periods with humans [26], venom toxicity to

humans and propensity to inject venom after a bite [20]. Lastly, socioeconomic and demo-

graphic data may also be used if associated risk factors are well known in the study region. Pre-

dictions obtained with the suggested approach will not necessarily represent incidence rates or

another measure of burden, but are likely to be broadly correlated with them [28].

Achieving the burden reduction goals laid out in the snakebite roadmap (reducing burden

by 50% by 2050; [11]) is an exceptionally ambitious target, requiring advances to our basic

understanding of snakebite epidemiology and its treatment. As for other zoonotic diseases,

global changes are likely already influencing snakebite and envenoming dynamics, and effi-

cient management will need to accommodate for such changes. However, unlike for many

zoonoses, few tools currently exist for snakebite that both shed light on its mechanistic under-

pinnings and provide avenues for burden mapping and prediction under scenarios of global

change or for testing interventions. Studying snakebite as a zoonotic disease has considerably

improved our understanding of its epidemiology: it is a dynamic process, its burden is the

result of the effects of humans on the abundance of snakes and both affect the burden of snake-

bite envenoming. The ecological footprint of climate and humans, via land use, represents key
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characteristics of local populations that are related to snakebite levels. All these factors, and

the nature of snake models used, make our model a simple, yet effective tool to forecast the

impacts of global environmental change on snakebite burden. Such exercises are necessary to

develop relevant interventions for the present and into the future to solve the snakebite crisis.

Supporting information

S1 Fig. Quantile-quantile plots of both non-spatial models. A) Mass-action model and B)

refuge effect model. The curved shape of incidence rates for the refuge effect model indicates

that the distribution of incidence was very different from the incidence rates used as data.

(TIF)

S2 Fig. Direct comparison of models. A) Refuge effect and B) Mass action.

(TIF)

S3 Fig. Geweke convergence diagnostics of the spatial random autoregressive effects of the

snakebites model. Estimates are expected to lie within -2 and 2 for sampling convergence.

(TIF)

S4 Fig. Geweke convergence diagnostic of the spatial random autoregressive effects of the

envenoming model. Estimates are expected to lie within -2 and 2 for sampling convergence.

(TIF)

S1 Table. Upper credible interval of Gelman convergence diagnostic for the spatial mass-

action snakebites model. Upper CI should not exceed 1.05. for sampling convergence.

(XLSX)

S2 Table. Upper credible interval of Gelman convergence diagnostic for the envenoming

spatial model. Upper CI should not exceed 1.05. for sampling convergence.

(XLSX)
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Toxicon. 1996; 34: 225–236. https://doi.org/10.1016/0041-0101(95)00125-5 PMID: 8711756

53. Kasturiratne A, Pathmeswaran A, Fonseka M, Lalloo D, Brooker S, de Silva H. ESTIMATES OF DIS-

EASE BURDEN DUE TO LAND-SNAKE BITE IN SRI LANKAN HOSPITALS. SOUTHEAST ASIAN J

TROP MED PUBLIC HEALTH. 2005; 36: 8. PMID: 16124448

54. Cushman SA, McKELVEY KS, Noon BR, McGARIGAL K. Use of Abundance of One Species as a Sur-

rogate for Abundance of Others: Evaluating Species Surrogacy. Conservation Biology. 2010; 24: 830–

840. https://doi.org/10.1111/j.1523-1739.2009.01396.x PMID: 20067487

55. Thalgaspitiya S, Isbister G, Ukuwela K, Sarathchandra C, Senanayake H, Lokunarangoda N, et al.

Bites by snakes of lesser medical importance in a cohort of snakebite patients from rural Sri Lanka. Tox-

icon. 2020; 187: 105–110. https://doi.org/10.1016/j.toxicon.2020.08.025 PMID: 32891665

56. Renner IW, Elith J, Baddeley AJ, Fithian W, Hastie T, Phillips SJ, et al. Point process models for pres-

ence-only analysis. Methods in Ecology and Evolution. 2015; 6: 366–379. https://doi.org/10.1111/2041-

210X.12352

57. Isaac NJB, Jarzyna MA, Keil P, Dambly LI, Boersch-Supan PH, Browning E, et al. Data Integration for

Large-Scale Models of Species Distributions. Trends in Ecology & Evolution. 2020; 35: 56–67. https://

doi.org/10.1016/j.tree.2019.08.006 PMID: 31676190

PLOS NEGLECTED TROPICAL DISEASES Better understanding snakebites using zoonotic transmissin models

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009867 May 12, 2022 20 / 20

http://cran.r-project.org/package=raster
http://cran.r-project.org/package=raster
https://doi.org/10.1007/BF00164051
http://www.ncbi.nlm.nih.gov/pubmed/1895021
https://doi.org/10.1007/s10584-018-2338-4
https://doi.org/10.1016/S0140-6736%2818%2931224-8
https://doi.org/10.1016/S0140-6736%2818%2931224-8
http://www.ncbi.nlm.nih.gov/pubmed/30017551
https://doi.org/10.1016/S0140-6736%2819%2932510-3
http://www.ncbi.nlm.nih.gov/pubmed/31982076
https://doi.org/10.1016/j.toxicon.2017.04.015
https://doi.org/10.1016/j.toxicon.2017.04.015
http://www.ncbi.nlm.nih.gov/pubmed/28456535
https://doi.org/10.1136/pmj.78.919.276
https://doi.org/10.1136/pmj.78.919.276
http://www.ncbi.nlm.nih.gov/pubmed/12151569
https://doi.org/10.1186/1745-6673-9-20
http://www.ncbi.nlm.nih.gov/pubmed/24847375
https://doi.org/10.11609/JoTT.o2490.1261-7
https://doi.org/10.1016/0041-0101%2895%2900125-5
http://www.ncbi.nlm.nih.gov/pubmed/8711756
http://www.ncbi.nlm.nih.gov/pubmed/16124448
https://doi.org/10.1111/j.1523-1739.2009.01396.x
http://www.ncbi.nlm.nih.gov/pubmed/20067487
https://doi.org/10.1016/j.toxicon.2020.08.025
http://www.ncbi.nlm.nih.gov/pubmed/32891665
https://doi.org/10.1111/2041-210X.12352
https://doi.org/10.1111/2041-210X.12352
https://doi.org/10.1016/j.tree.2019.08.006
https://doi.org/10.1016/j.tree.2019.08.006
http://www.ncbi.nlm.nih.gov/pubmed/31676190
https://doi.org/10.1371/journal.pntd.0009867

