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  The inverse square potential and relativistic bound states 
 

An important failure of the basic bag model is its failure to provide a pion-mediated interaction. We are 

mainly interested in investigating weather gross properties of the nucleon can be explained confining 

quarks by a potential other than three dimensional infinite potential well, infinitely deep spherical cavity. 

In this respect, we have investigated whether inverse square attractive potential can  bind non-zero mass 

particle to a   small region as in the case of MIT bag model[2].  

 

We are motivated do so by the fact that the phase shift produced  by a repulsive inverse square potential 

becomes complex  when the net inverse square potential, attractive inverse square potential plus the 

centrifugal potential becomes negative, and the repulsive square well potential phase-shift is independent 

of the incident energy of a scattering  particle[1] in case of non-relativistic quantum mechanics.  

 

Solution of Dirac equation for inverse square attractive potential 

 Let us solve the Dirac equation for 
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  , where   is positive. In this respect we have to solve the 

coupled differential equations (1.1b) and (1,1c) in the following.          
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 1  and 2  carry their usual meaning and we look for solutions of (1.1b) and (1.1c) in the form of power 

series; 
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It can be shown that                                                                                                                                                                                                                                                                               
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From this equation, it follows that 00 a  and  
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                                   0100  akbsb                                                              (1.4)                                                                                 

Again, we must have 
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Which gives 00 b  and  

                                    0100  bkasa                                                                (1.6)                                                                                

(1.4) and (1.6)) give 00011  baba . This implies that  both g  and f  are identically zero.  

 

Hence, we conclude that the inverse square potential cannot bind a relativistic particle. We conclude also 

that in relativistic scattering states  there is no need to cut-off the potential tail as discussed in [3] and [4].  
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