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Solution of a special Diophantine equation using elementary 

mathematics 
Our object is to solve the Diophantine equation 223  yx  using elementary mathematics. Fermat‟s 

solution of this equation is vague [1] ,and one has to depend on  advanced mathematics such as unique 

factorization domain,UFD, etc. in complex number field  to solve this equation completely. In the 

following, we solve this equation without using complex number field. 

 

Solution: If the equation has an integer solutions for y , x , then y  should be odd. If y is divisible by3 , 

then we must have 31 23  yx  and )3(mod01 23 x  and since          

                                      )3(mod032 y                                                                         (1) 

 y  can not be divisible by 3 . 

Also, 3123  yx  and since 12 y  is divisible by3 (Fermat‟s little theorem). 

                            )5)(5(273  yyx                                                                          (2) 

Therefore 5,3  yx  is a solution. We will use a  simple mathematical  technique  to show that  there 

is no any other solution. 
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Note that m  is even, )8(mod0k , 1),( mn . 
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Both solutions of this quadratic  can not be integers since the sun of the  roots , 9
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The solutions  of the equation are given by  
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and  we assume that dmnk  22

1 9  is an integer.  
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Hence, the other root is also an integer contradicting our assumption that 1
m

n
. Therefore 

1k  can not be 

an integer. Hence, 223  yx  has no other solutions. 
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Therefore 5,3  yx  is a solution. We use the same technique  as before  to show there is no any other 

solution. 
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Hence, as before the other root is also an integer contradicting our assumption that 1
m

n
. Therefore 1k  

can not be an integer. 
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