
Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

137

Paper No: SE-01 Systems Engineering

An exploratory evaluation of replacing ESB with
microservices in service-oriented architecture

L. D. S. B. Weerasinghe*

Department of Computer Science & Engineering
 University of Moratuwa, Sri Lanka

weerasingheldsb.20@uom.lk

Indika Perera

 Department of Computer Science & Engineering
 University of Moratuwa, Sri Lanka

indika@cse.mrt.ac.lk

Abstract - With the continuous progress in technology
during the past few decades, cloud computing has become a
fast-growing technology in the world, making computerized
systems widespread. The emergence of Cloud Computing has
evolved towards microservice concepts, which are highly
demanded by corporates for enterprise application level.
Most enterprise applications have moved away from
traditional unified models of software programs like
monolithic architecture and traditional SOA architecture to
microservice architecture to ensure better scalability, lesser
investment in hardware, and high performance. The
monolithic architecture is designed in a manner that all the
components and the modules are packed together and
deployed on a single binary. However, in the microservice
architecture, components are developed as small services so
that horizontally and vertically scaling is made easier in
comparison to monolith or SOA architecture. SOA and
monolithic architecture are at a disadvantage compared to
Microservice architecture, as they require colossal hardware
specifications to scale the software. In general terms, the
system performance of these architectures can be measured
considering different aspects such as system capacity,
throughput, and latency. This research focuses on how
scalability and performance software quality attributes
behave when converting the SOA system to microservice
architecture. Experimental results have shown that
microservice architecture can bring more scalability with a
minimum cost generation. Nevertheless, specific gaps in
performance are identified in the perspective of the final user
experiences due to the interservice communication in the
microservice architecture in a distributed environment.

Keywords - microservice, performance, scalability, SOA

I. INTRODUCTION

Since the world is more inclined towards new
technology, it has ultimately resulted in an information
system-driven society. People are concerned about
attending to their routine tasks in the most efficient, easy,
and fastest method possible. Because of this driving need
to achieve efficiency and effectiveness, the necessity to
successfully build systems to win over these real-world
problems was considered vital by software engineers.
Researching and proposing new software architectural
concepts by the software industry were initiated to develop
the most reliable software in the world [1]. These
architectures give a better view of the software to provide
the services and evolve the quality of its life cycle.
Architecture is responsible for providing the bridge for the
software functionalities and the system quality attributes
necessary for the business needs. As a first step, the
engineers develop object-oriented architecture patterns that
cater to the small-scale software run on the host machines.

Historically, the software industry developed
monolithic software for enterprise-level solutions. The
traditional monolithic application encapsulates all the

components, functions into one single package and deploys
as a single application. Most of the service-oriented
monolithic applications are developed using the C, C++,
Java, and Python languages. Those languages by default
support creating the single executable artifact. Some of the
monolithic systems are deployed in the distributed
environment using the RMI, Network Object, and CORBA
concepts. However, it's tough to maintain the monolithic in
the distributed environment [2].

On the contrary, there are many advantages of using
the monolithic systems such as easy deployment because
all the modules are in the same code base, supportive nature
of the entire IDEs, ease of testing the entire system as
there’s no requirement to set up various components, and
the ease of scaling since monolithic application comes up
with the option of a single distribution. However, the
monolithic application has significant drawbacks, which
are mostly related to business growth and technology
adaptations. For instance, all the components are packed
together in monolith architecture with a vast codebase;
hence, it’s complicated to make modifications. Also, the
application patching process and understanding the
monolithic applications are quite challenging. On the other
hand, one single failure of the application can cause the
collapse of the entire system. Therefore, it can be derived
that those monolithic applications are not suitable for
deployment in the containerization environment. Monolith
applications are cumbersome, and it takes a considerable
amount of time to startup. Continuous integration and
continuous delivery pipeline are complicated to maintain
with monolithic systems because of the heaviness of the
systems. One single change needs to test the overall system
functionalities as of the tightly coupled components. Hence
overall time to test and the cost generated for deployment
will be considerably high.

With the concept of the “separation of concerns,”
component-based software engineering comes into the
world, which leads to better implementation, design, and
evolution of software systems. Then the Service-Oriented
Computing (SOC) paradigm comes into context. People
moved to distributed software development and deployed
that software in the distributed environment [3]. In SOC,
each component’s functionalities are shared using the
message passing through those distributed components.
The SOC architectural concept brings several advantages
to the software industry, such as “dynamism” which can
introduce the same component based on the system load,
modularity which can be reused across the components,
and distributed development.

In the mid-‘90s, Gartner Group researchers introduced
a reference architecture for the industry called service-
oriented architecture (SOA) [4]. In SOA architecture, both
the service consumers and service providers get together

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

138

and provide the business needs. Services are the distributed
components, and they have published the interfaces to do
the communication via middleware. Those interfaces
abstract all business logic. One of the main components of
service-oriented architecture is the enterprise service bus
(ESB) which serves as middleware. ESB's main task is to
enable communication between those services and govern
them. Most of the SOA systems use the Simple Object
Access Protocol (SOAP) for communication. SOA
architecture data sources are shared with the components
deployed in the same environment. That means the same
database is open for both Data Definition Language (DDL)
and Data Manipulation Language (DML) and all the
components residing inside the SOA architecture.

The difference between SOA and monolithic
architecture is that SOA architecture consists of the
component as a service, but the monolithic builds all the
logic in one package. In the monolithic architecture, all the
logic is based on sharing one single hardware resource.
Nevertheless, in SOA architectures, each component uses
its hardware resources to provide the service. Compared to
the monolith applications, SOA brings more advantages to
the software industry, such as enabling the system's growth
to the enterprise level, bringing component-wise scalability
to the whole environment, and reducing operational costs.

The term “Microservice” was initially introduced in
2011 at an architectural workshop conference [2].
Microservice architecture comes into the world as a new
architectural paradigm that can be illustrated as tiny
services running independently and communicating with
each other and satisfying the business requirement. The
microservice architecture was widely used by people in the
past few years, which can be considered as a positive
behavior to the software industry. With time, most software
firms arrived at the notion that using the microservice
architecture developments brings high productivity to the
company and produces a successful end product for the
clients [5]. Microservice architecture also takes advantage
of cloud services such as on-demand provisioning,
serverless functions, and elasticity as well as a lot of quality
attributes such as scalability, maintainability, performance
and many more.

People who intend to move away from the monolithic
to SOA architecture should particularly comprehend the
quality attributes generated by it. In this paper, our acute
concentration is on evaluating and coming up with the
architectural conclusion on the extremely critical quality
attributes which diverge from the most common SOA
architecture with ESB and the Microservice architecture.

II. BACKGROUND AND RELATED WORK

Microservice architecture is derived from the concept
of the SOA. Microservices are now considered the new
software architecture for highly scalable and highly
maintainable distributed systems. Nevertheless, when the
system functionalities grow day by day, microservice
architecture tends to get complex because of the large set
of independent services it has as functions. Developing and
deploying the microservices independently to each other
brings high cohesion and loosely coupled modules [6].

The reason behind the popularity of the microservices
architecture is the quality attributes associated with the
microservices. We identified the most concerning quality
attributes on the microservices architecture, such as

scalability, performance, availability, maintainability, and
security [7, 8].

A. Quality attributes in microservice architecture

Several definitions can define “Quality” in a
microservice architecture. Some people denote it by the
software's capability to meet the required requirements,
and some of the people define it as the “reality of the
objectives” [9]. In the context of software engineering,
quality refers to the relationship between the business and
the product. This software quality contains two types;

Software functional quality – Describes the functional
requirements with the current system design. Functional
quality attributes show how the system matches the
business requirement. Using this quality, people can decide
whether the developed software is acceptable or not.

Software structural quality – Describes the software
non-functional requirements that support in providing the
functional requirement on the system. Those non-
functional requirements bring more value addition to the
software ecosystem.

The software stakeholders are primarily concerned
about the system requirements. Based on the stakeholder
requirements, we can divide software quality into two main
groups; the development phase and the operations phase.
In the development phases, we need quality requirements
that are very important for software developers, such as
maintainability, modularity, and understandability. Quality
requirements for the operations related to the system end-
users and system supporting teams include usability,
traceability, availability, and performance.

Those quality requirements have differed from the
software domain, priorities of the developers, and the end-
users. We can see the quality attributes when the system
has been implemented.

Fig. 1. How quality attributes influence to software architecture

According to Figure 1, all the quality attributes are
depending on the software architecture [10]. It is
mandatory to review the software architecture before the
software development or use the reference architecture to
develop the software. The qualities cannot be added to the
system architecture ad-hoc. Therefore, developers need to
build those qualities from scratch on the software.

B. Scalability

The scalability quality attribute is one of the primary
critical features in the microservice architecture. The
scalability attribute was initially introduced to enhance
software performance and control high traffic. Scalability

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

139

quality also ensures the system fault tolerance. There are
two main parts of scaling.

Horizontally Scaling- This method ensures that the
application's performance is increased by adding another
application instance over it. For example, we have one web
server before scaling, and after scaling, we have multiple
web servers that serve traffic. Load balancers help to
distribute the traffic load among those web servers [11].

Fig. 2. Scaling cube

Vertically Scaling- This means increasing the
hardware resource to improve the application performance,
such as increasing the RAM, increasing the CPU, and using
the SSD instead of HDD storage [12]. Vertical scaling is a
very traditional method, and most people use computers to
do this kind of scaling. For instance, vertical scaling is
majorly used when the personal computer is slow and the
need to increase the computer hardware occurs.
Nevertheless, this scaling is bound to a limited area, and
there’s no possible way to increase the hardware resource
as we want. Because particular hardware only supports the
specific ranges only. As an example, some motherboards’
maximum supported RAM is 64GB.

Scaling cube shows scaling model for the software
applications [13]. We also refer to this concept when
scaling the application in our research. Figure 2 X-Axis
scaling is referred to as horizontally scaling, work evenly
distributed scaling, and horizontally duplication. The
simple meaning is that running the software application
behind the load balancer. The Load balancer is responsible
for the equal distribution of the load among the number of
applications connected to the load balancer rules. X-Axis
scaling is mostly used by monolithic applications with
shared databases and caches.

Y-Axis scaling applications are decomposed to the
small binaries by considering the functions/services called
microservices. (0,0) indicates the monolithic application,
which contains all the services as one single binary. Y-Axis
scaling gives more value to the software architecture
because services behave independently. Therefore, people
can only scale the relevant services using this concept.

The microservice architecture is a combination of both
X and Y-Axis scaling. This helps bring more scalable
software architecture to the deployments.

Z-Axis scaling is somewhat similar to the X-Axis
scaling, but it differs from the data used by the application.
For instance, assume that we have a significant number of
students, and according to the admission number, they are
segregated into groups. In each group, the same application
is running and doing the same service but using different
data. This is primarily applicable to B2C applications. The

load balancer should need to be intelligent to recognize the
correct data partition server to route the traffic. Otherwise,
we need to put the router before those servers.

When it comes to a cloud-native architecture, most
cloud providers such as Amazon Web Services (AWS),
Google Cloud Service (GCP), and Azure develop various
vertical and horizontal scaling solutions. Most prominent
players, such as Netflix, Uber, WhatsApp, and Instagram,
also deploy their applications in cloud-native environments
[11]. Using the virtualization technology, the cloud
providers introduce vertical and horizontal scaling on the
cloud resources such as servers, storage, and databases.
They have introduced AI technologies like machine
learning to perform predictive analysis on the scaling part
and automatic scaling. Day by day, those reactive scalings
become seamless with the help of those AI technologies.
Most of the cloud-native applications developed as
containerized applications and deployed on container
orchestration engines like Kubernetes. Cloud providers
also give services to cloud consumers by enabling the
container orchestration engine. For example, the AWS
cloud provider gives Amazon Elastic Container Service
(Amazon ECS) and Google cloud to provide the Google
Kubernetes Engine (GKE). Those services will take care of
managing the whole container orchestration part. The
developer needs only to develop the application which is
suitable for cloud-native environments. In this cloud-native
environment, containers are warped as small pods that
allow the scaling up and down in a simple way.

C. Performance

Performance is one of the most critical quality
attributes. Both software consumers and the developer care
about application performance during the run time.
Performance is measured by the measurable factor of the
system when performing the given functionalities within
given constraints such as accuracy, latency, and resource
consumption. A simple way to define the performance in
the software is how software behaves on time, which is
called responsiveness [12]. Most people move away from
manual work to digitalized platforms with the belief that
such work can be done in lesser time and minimum effort.
The outcome of the software system should always be;
consumption of less amount of time with more accuracy.
The main objective of the real-time system is to give a
response in real-time. For that, system architectures and
software design also need to be well established. In the past
decade, most of the performance issues were identified in
the production environments since unpredictable behaviors
of the users who are using the software and the
unpredictable behaviors in the environment are found to be
the root causes for performance issues. To reduce the above
issue, the performance factor is considered when the
system is in the design phase.

There are several criteria to check the performance of the
software system.

a) Latency / response time

This refers to how much time is taken to complete the
task and respond. If the time difference between start time
and end time is low, that means the system performance is
good. API-based synchronized system’s API response time
measure using the microseconds and milliseconds.

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

140

b) Throughput

Throughput refers to the number of tasks that have
been completed within the given time interval. In other
words, it is the software process rate or the time frame as
seconds. It’s also called transactions per second (TPS).
Measurement of the throughput is different from
application to application. High throughput means software
performance is in a good state.

c) Capacity

This means how much work software can perform.
The maximum throughput is considered as system
capacity. In other words, the maximum number of events
the software can perform within a unit of time and total
resource consumption. For example, software A can
support a maximum of 250 TPS with 1s latency backend
AWS m4.large VM (8GB RAM, 2vCPU) and network
perspective bandwidth means the capacity. When the
capacity is getting immense value, then we can consider
that the software performance is high.

III. RESEARCH METHODOLOGY

This research will talk about the most concerning
quality attribute variation when converting software
architecture from SOA to microservice architecture. By
critically reviewing the software architecture, we identified
that scalability and performance are the most critical
quality attributes in the software industry [8][9]. After the
monolithic architecture, software architects introduced the
SOA. However, we can identify some limitations on the
scaling and the performance quality attributes by reviewing
the SOA. There were several problems identified when
scaling the SOA-based system. All the services are
decoupled in the SOA-based system and exchange the
required data via the enterprise service bus (ESB). ESB is
responsible for the service orchestration, and it acts as a
backbone of the SOA system. When scaling the SOA-
based system, at one point, people need to scale the ESB
also. So scaling ESB requires high-end specification
servers that will generate a considerable amount of cost.
ESB servers contain many features and modules, and in
some cases, the software ecosystem did not use all of the
features carried on the ESB servers in SOA. Because of
that, performance-wise, it has some impact on the SOA
systems during run time. With those factors, people are
moving from Software Oriented Architecture to
microservice-based architecture. This research evaluates
how scalability and the performance quality attributes vary
when transforming SOA to the microservice-based
architecture.

We have developed the SOA system that can talk with
the legacy backend, and at the same time, we have
developed business functionalities using microservice-
based architecture, which can also communicate with the
legacy backends.

Fig. 3., shows how the SOA system integrates with the
databases, backend, and clients. ESB is responsible for
catering the message routing and publishing all the
communication to the data source.

Fig. 3. SOA architecture

Here we use the WSO2 Enterprise Service Bus, an
open-source product, and most of the well-known software
companies use this product for their software systems as
well [14]. We choose WSO2 ESB as it generates many
features like better performance and user-friendly nature
compared to other ESBs. Also, in WSO2 ESB, the
lightweight mechanism is introduced, and also it is an
open-source product [14] [15]. With the WSO2 ESB, we
wrote the business logic using the Apache Synapse
language [17] and deployed it as Carbon applications in the
ESB servers [18]. All the products of WSO2 are based on
the Carbon platform. This is a form of middleware platform
that stores business IT projects on the cloud, and on-
premises servers [19]. With the help of the WSO2
developer studio, WSO2 ESB has created the opportunity
for the software developers to swiftly orchestrate
applications, business processes, and the services such as
data service, proxy-based service, message routing service,
etc. With this kind of development, software companies
can deliver the services promptly to the clients. Moreover,
the technical and the business services can be integrated
with the legacy systems and any kind of SAAS services in
SOA architecture. Backend is a legacy that one can
communicate using the REST protocol. Clients/User
interface communicates to the ESB using the REST
protocol by exposed APIs.

Fig. 4. Microservice architecture

Figure 4 shows how the microservices replace the
SOA System. We have identified the ESB server's required
services and made those services into individual
components and deployed them as microservices. Business
microservice consists of all business logic, and data service

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

141

is responsible for publishing data. Here we used the same
legacy backend, which can communicate with the REST
protocol with the microservices. This microservices
architecture is developed using JAVA language with the
help of the Spring boot framework. REST client libraries
are used for inter-service communication with the
microservice to microservice and other services. Business
logic microservice has exposed the APIs using the request
controllers to communicate with the clients/user interfaces.

IV. RESULTS AND EVALUATION

The developed two systems were evaluated in the real
environment with two main quality attributes: performance
and scalability. In scalability, we are more concerned about
the hardware footprint and the cost. There are several
aspects of performance. In this, we evaluated the latency,
throughput, and capacity with the allocated hardware.
Throughout the experimental time, we collected statistics
about the load average of the server, memory usage on the
server, overall response time of the application, and
throughput of the application using the JMeter [20].
Applications' ramp-up time frame and the steady-state time
frame are included in those statistics. Firstly, we hosted the
application in the different servers which are having
different footprints. Then we collected the above statistics
in those different environments by sending the 1KB size
POST JSON payload to the applications. Upon collecting
the statistics and sending the payload, backend servers
returned the 1KB size JSON response. We use the Amazon
Web Services (AWS) environment for all the
environments. As a client, we used Apache open source
JMeter [20] to generate the load toward the deployed
servers. For all stress tests, we used 350 concurrent threads.
In the AWS environment, T2 type resources were used in
our experiment because of the following several reasons: It
has Intel Xeon processors with high frequency that can be
burstable, its coherent baseline performance is suitable for
the general-purpose application deployments [21], and It is
capable of balancing the overall server resources
(CPU/memory/network).

Fig. 5. 1st Test suite architecture

As the first test suite shows in Figure 5, we used the
AWS t2.xlarge EC2 instance with four virtual CPUs and
16GB RAM. Also, the Solid-State Drive (SSD) was used
to store the application. Then we deployed the WSO2 ESB
application with customized development using the
synapse language to cater to business logic. The ESB
server connects with the AWS RDS MYSQL database
service, which is deployed in the same VPC to reduce
network latency. We used db.t2.xlarge, which has four
virtual CPUs and 16GB RAM. Simultaneously, we
provisioned the 100GB storage size for this RDS.

Fg. 6. 2nd Test suite architecture

The microservices for the second test suite, as shown
in Fig. 6, that can perform the same ESB business logic
relevant to this deployment, was developed. It had two
microservices, and those microservices are deployed in the
AWS t2.xlarge EC2 instances with Solid-State Drive
(SSD) storage. Following the microservice concept, two
different databases which are deployed in the same internal
network. db.t2.large type RDS with 100GB storage was
used for the data service microservice, and db.t2.small type
RDS with 20GB storage was used for business
microservice.

Fig. 7. 3rd Test suite architecture

For the third test scenario shown in Fig. 7, we reduced
the server footprint after analyzing the statistics we
collected on the 2nd test suite. For both the microservice
deployments, we used the t2.medium AWS EC2 instances,
which have 2 virtual CPUs and 4GB RAM. We used the
Solid-State Drive (SSD) in both servers to store the
application. The same database type was used in the 2nd test
suite without any modifications. All the servers and the
database were placed in the same internal network.

The backend servers and the client server (JMeter)
were not changed for any of the testing scenarios. For
storage, AWS t2.xlarge EC2 instances with Solid-State
Drive (SSD) were used for both backend servers and the
client servers. These two servers were also placed in the
same internal network as the other servers.

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

142

Fig. 8. Load average comparison

Figure 8 shows how the average server load varies on
the SOA architecture and microservice architecture
systems on the different hardware footprints. In the SOA
architecture, the ESB node consumes many load averages
to process the client requirement. However, none of the
microservices deployed in the two different server types
went for more than one load average.

If we group and add up the t2.xlarge two microservices
load averages, those added up values will not be higher
than the SOA architecture load average values. This is the
same for the t2.medium microservices load average as
well. It was found that Microservice architecture
deployment was able to work with less resource
consumption once we were vertically scaled-down the
servers. On the contrary, ESB servers could not vertically
scale down because they have fully utilized the current
server resources.

Fig. 9. Memory usage comparison

Fig. 9 shows the memory consumption on the SOA
architecture system and the microservice architecture
systems. None of the servers consume the 20% server
RAM. When vertically scaling down the microservices, it
We can see a slight improvement in the throughput in
figure 11 when vertically scaling the hardware footprint in
the microservice architecture was observed that it increases
the memory by nearly 5% on both the data service
microservice and the business logic microservice.

Fig. 10. Response time variation

Fig.10 shows the overall response time on each system
with the deployed environment. SOA system performs
with less response time in comparison to the microservice
architecture system. It does not deviate much from the
environment, and its software architecture. In the SOA
system, all the modules we packed in the ESB server and
no network calls for satisfy the full business function. All
the logic is handled inside the single JVM. Because of that,
response time is lower than the microservice architecture.
The reason behind having a higher response time in the
microservice architecture is because of the network call to
the separate services. It introduces the additional time for
the overall response time.

SOA system shows high performance by producing
within a less response time. However, system throughput
is less than the microservice. At a single time, the slice
system only handles the smaller number of concurrent
requests rather than the microservices. Because the SOA
system consists of all the modules in the same JVM, and it
takes all the resources on the JVM. So, the server does not
accept the high number of requests to the single run time
environment.

Fig. 11. Throughput comparison

 .

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

143

Fig. 12. Cost comparison

Fig. 12 graph only considers the dynamic values we
have used in different test suites. Comparing the cost of
both SOA and the microservice architecture shows that
SOA generates a higher cost for the entire end-to-end
deployments [22]. Experienced system architects can
determine the exact footprint for the developed
microservice by considering the user requirements. Using
the optimal hardware footprint, we can save much money
on software deployment projects. Those microservice can
deploy the Kubernetes environments without putting more
effort. From that, we can do the auto-scaling as per the
traffic load. With this also we can save the overall cost.

V. CONCLUSION AND FURTHER WORK

This topic unfolds the factors to evaluate the research
problem, which is the most concerning quality attributes of
scalability and the performance variate between the Service
Oriented Architecture and microservice architecture. Most
organizations expect microservice architecture to move
their current monolithic architecture or SOA. The main
concern with the current monolithic and SOA architecture
is the cost of scalability. Their current deployment footprint
is also high, and it already involves a considerable cost.
When we were going to scale that current environment, it
made the cost nearly double. Nowadays, all the systems are
deployed as contained in a cloud-native environment.

Nevertheless, monolithic and SOA-based architecture
systems are not suitable for cloud-native environments.
Because those applications are enormous and take a
considerable amount of time to startup and serve the traffic,
if we put those kinds of applications in the Kubernetes
environments as pods, we cannot get the advantages
provided by the container orchestration engines.
Nevertheless, when converting to cloud-native
microservices, some of the performance factors get
affected. Before converting the monolithic / SOA system,
we need to think about what performance factor requires
enhancement. In terms of capacity and cost-effectiveness,
microservice could be considered a better approach. When
we move to the microservice architecture, we have flexible
scalability. Through Microservice architecture, people
have the option of only scaling the necessary services
rather than the entire application. The previous chapter
shows the fundamental analysis, and this could assist
researchers in concluding microservice architecture.

In summary, we could state that microservice
architecture is a better approach in terms of scalability and
performance in comparison to SOA and monolithic

architecture. The research study results clearly showed that
microservice architecture gives more performance in terms
of the throughput and the application's capacity. Moreover,
it is a cost-effective solution when scaling the applications.
With this study, architects can redesign existing
microservice architecture applications and adhere to cloud-
native environments. Future work needs to find a solution
for reducing the performance impact on latency in the
microservice architecture.

REFERENCES

[1] R. Flygare and A. Holmqvist, “Performance characteristics
between monolithic and microservice-based systems,” Blekinge
Inst. Technol., 2017.

[2] N. Dragoni et al., “Microservices: Yesterday, Today, and
Tomorrow,” in Present and Ulterior Software Engineering, M.
Mazzara and B. Meyer, Eds. Cham: Springer International
Publishing, 2017, pp. 195–216. doi: 10.1007/978-3-319-67425-
4_12.

[3] MacKenzie, K. Laskey, F. Mccabe, P. Brown, and R. Metz,
“Reference model for service oriented architecture 1.0,” Public
Rev Draft, vol. 2, pp. 1–31, Aug. 2006.

[4] R. Mohan, T. Ramanathan, G. Rajendran, and D. N. MohanRaj,
“Gartner Research Reviews on Middleware,” Int. J. Sci. Res.
Publ., vol. 5, no. 9, p. 2, 2015.

[5] R. Wieringa, N. Maiden, N. Mead, and C. Rolland,
“Requirements engineering paper classification and evaluation
criteria: a proposl and a discussion,” Requir. Eng., vol. 11, no. 1,
pp. 102–107, Mar. 2006, doi: 10.1007/s00766-005-0021-6.

[6] N. Alshuqayran, N. Ali, and R. Evans, “A Systematic Mapping
Study in Microservice Architecture,” in 2016 IEEE 9th
International Conference on Service-Oriented Computing and
Applications (SOCA), Macau, China, Nov. 2016, pp. 44–51. doi:
10.1109/SOCA.2016.15.

[7] S. Li, “Understanding Quality Attributes in Microservice
Architecture,” in 2017 24th Asia-Pacific Software Engineering
Conference Workshops (APSECW), Nanjing, Dec. 2017, pp. 9–
10. doi: 10.1109/APSECW.2017.33.

[8] S. Li et al., “Understanding and addressing quality attributes of
microservices architecture: A Systematic literature review,” Inf.
Softw. Technol., vol. 131, p. 106449, Mar. 2021, doi:
10.1016/j.infsof.2020.106449.

[9] A. Chandrasekar, M. SudhaRajesh, and M. P. Rajesh, “A
Research Study on Software Quality Attributes,” Int. J. Sci. Res.
Publ., vol. 4, no. 1, p. 4, 2014.

[10] M. Svahnberg, C. Wohlin, L. Lundberg, and M. Mattsson, “A
Method for Understanding Quality Attributes in Software
Architecture Structures,” in Proceedings of the 14th international
conference on Software engineering and knowledge engineering,
Jan. 2002, p. 8. doi: 10.1145/568760.568900.

[11] N. Kratzke, “A Brief History of Cloud Application
Architectures,” Appl. Sci., vol. 8, no. 8, p. 1368, Aug. 2018, doi:
10.3390/app8081368.

[12] U. Smith and L. G. Williams, “Software performance
engineering: a case study including performance comparison
with design alternatives,” IEEE Trans. Softw. Eng., vol. 19, no.
7, pp. 720–741, Jul. 1993, doi: 10.1109/32.238572.

[13] Marquez, M. M. Villegas, and H. Astudillo, “An Empirical Study
of Scalability Frameworks in Open Source Microservices-based
Systems,” in 2018 37th International Conference of the Chilean
Computer Science Society (SCCC), Santiago, Chile, Nov. 2018,
pp. 1–8. doi: 10.1109/SCCC.2018.8705256.

[14] S. Sasono, F. R. Rumambi, R. Priskila, and D. B. Setyohadi,
“Integration of pharmacy and drug manufacturers in RSUD Dr
Samratulangi Tondano by ESB WSO2 to improve service
quality: (A case study of RSUD Dr Samratulangi Tondano,
Minahasa Regency, North Sulawesi),” in 2017 4th International
Conference on Information Technology, Computer, and
Electrical Engineering (ICITACEE), Semarang, Oct. 2017, pp.
249–254. doi: 10.1109/ICITACEE.2017.8257712.

[15] sofwarewiki, “7 Excellent Open Source ESB (Enterprise Service
Bus) Alternatives.” https://www.fromdev.com/2012/03/7-
excellent-open-source-enterprise.html

[16] Chanaka Fernando, “Five Reasons Why WSO2 is Better Than
Mule.” WSO2, Sep. 23, 2020. [Online]. Available:
https://wso2.com/blogs/thesource/five-reasons-why-wso2-is-
better-than-mule/

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

144

[17] J. Ma, H. Yu, and J. Guo, “Research and Implement on
Application Integration Based on the Apache Synapse ESB
platform,” AASRI Procedia, vol. 1, pp. 82–86, 2012, doi:
10.1016/j.aasri.2012.06.015.

[18] WSO2, “Quick Start Guide - Enterprise Service Bus 5.0.0 -
WSO2 Documentation.” WSO2 Inc. [Online]. Available:
https://docs.wso2.com/display/ESB500/Quick+Start+Guide

[19] J. Krein, “Web-based application integration: advanced business
process monitoring in WSO2 carbon,” 2011, doi: 10.18419/opus-
2719.

[20] R. B. Khan, “Comparative Study of Performance Testing Tools:
Apache JMeter and HP LoadRunner,” p. 57.

[21] “Amazon EC2 Instance Types - Amazon Web Services,”
Amazon Web Services, Inc. https://aws.amazon.com
/ec2/instance-types/

[22] “AWS Pricing Calculator.” https://calculator.aws

