
Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

195

Paper No: SE-10 Systems Engineering

Theoretical framework to address the challenges in
Microservice Architecture

Dewmini Premarathna*
Department of Software Engineering

University of Kelaniya, Sri Lanka
dewminic@kln.ac.lk

Asanka Pathirana

Department of Software Technology
University of Vocational Technology, Sri Lanka

asanka.pathirana@gmail.com

Abstract - Microservice Architecture (MSA) is a
recommended way to introduce the application software in a
modularized manner instead of the traditional Monolithic
Architecture (MA) approach due to the inherent advantages.
The MSA is very much effective considering the true benefits
of scalability, flexibility, cost-effectiveness, etc. However,
there are significant challenges in the use of MSA as well in
the viewpoint of the seniors in the field of Software
Engineering (SE). So, the objective of this research is to
introduce a theoretical framework to be followed by the SE
industries to address the challenges they face in providing
MSA-based software solutions. In this research, the literature
of MSA is evaluated in detail to understand the influencing
factors to cater to the requirements of the software
developments. In methodology, two research questions are
derived based on the hypothesis of not getting adequate
benefit in the process of adopting MSA for software
application development; 1. What are the challenges to
implementing applications incorporating MSA? 2. How to
achieve the exact needs of the clients via MSA? For this study,
based on purposive sampling the five SE professionals are
selected for interviews to understand the true impact on
identified factors through literature for development
challenges and client satisfaction. Further, thematic analysis
is conducted for evaluating those extracts of the interview
qualitatively. Nevertheless, the online questionnaire is
distributed among a wide range of SE professionals in the
domain of MSA implementation for overall understanding
about significant factors filtered out through the literature
and the interviews, and those were analyzed descriptively.
Based on the findings, a theoretical framework is introduced
for successful implementation of MSA assuring the clients’
requirements. Eventually, this study confirms how MSA
adaptation with the theoretical framework is effective for both
organizations and clients.

Keywords - development, framework, microservices,
modularize

I. INTRODUCTION

At present, the software industry is a bit more complex
due to the evolvement of the technology, progressive
demand of the clients, affordability of the customer,
complex business requirements, etc. ultimately, the nature
of the solutions is also complex catering to different
requirements of different audiences[1], [2]. As a result, the
software industry is possibly subdivided into different main
categories such as product-based, service-based, solutions-
based, and research-based. However, the most important
consideration of any software solution is its architecture
influencing the quality of the final outcome. There are many
ways to introduce solid architecture to incorporate specific
requirements of the software solution giving priority to
exact requirement(s). But any architecture software industry
can decide whether it is a single component or a
combination of several modules.

Among the many available software architectures, the
MSA is a priority consideration for introducing solution
architecture either partially or completely because the MSA
allows introducing the solution as a collection of smaller
services[3]. On the other hand, the MA provides the entire
software solution as a single service but it comprises
drawbacks in implementation and maintenance perspectives
[4], [5]. However, MSA has been introduced to addresses
those issues effectively.

Moreover, the solutions-based software industries
mainly interact with clients to cater to their emerging
requirements, and the software solutions are developed by
providing the priority for the client requirements [6].
However, the technical decisions over architecture are made
by SE professionals. In some situations, the technical
background is also communicated with the client, but with
the facts in long run, the final outcome of the particular
phase of the development is more focused on [7]. As a
result, the client may be suffered in the long run due to
extended maintenance and extra efforts is different.

It is compulsory for the client to have an entire
understanding of the lifecycle of the use of particular
software for making a strategic decision towards selecting
the right application software [6], [7]. In other words, the
effectiveness of the business process should be improved
with the involvement of software solutions by increasing
productivity to achieve business objectives. The MSA is a
priority consideration for such initiatives so the important
factors of MSA are identified in detail in different aspects
such as maintainability, scalability, reusability, etc. [3], [5],
[8]–[10].

There is a trend in the industry to use MSA due to its
benefits, but there is uncertainty whether the organization
and client are acquired the true benefits of MSA. MSA also
has its own drawbacks associated with distributed services,
partitioned databases, infrastructure resources allocation
which add extra complexity to the software analysis, design,
development, and deployment [10]. The unacceptable or
improper usage of MSA also prevents getting its advantages
towards the organizations. These reasons may cause the
software industry to suffer from various shortcomings
throughout the Software Development Life Cycle (SDLC)
process. There is a possibility this is indirectly transferred
as a cost to the client. As a result, the client ends up with
high costs in long run [7]. This paper focuses on those
situations and proposes how to satisfy both organizations
and clients with the use of MSA on their projects.

Section II discusses the literature about MSA
incorporating the reviewed research papers. In section III,
the methodology is described and the research design is also
extracted from the methodology in the same section. The
results and discussions are laid down in section IV, whereas
the recommendations are illustrated via theoretical

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

196

framework next in section V. Then the conclusion is made
finally in section VI towards delivering the true benefits of
MSA for everyone.

II. LITERATURE REVIEW

The literature is to understand the real value of the MSA
and analyze whether those values are properly utilized by
the software industry towards delivering appropriate
benefits for the clients according to the specific
requirements. The main focus here is to have a strong
understanding of MSA, its benefits, and its challenges.
Literature is mainly categorized into design &
implementation, security, deployment, and reporting to
understand the benefits and the challenges associate with
MSA.

A. Design & Implementation

Incorporating MSA for the software solution is
comprised of a mix of both the benefits and the drawbacks
as per the requirement of the situation of a client, so it is
always challenging to make appropriate use of the required
microservices by software engineering professionals [11]–
[13]. Some features are required to implement essentially
and some others are inherently available with MSA. The
important high-level features of MSA are briefly described
as follows.

1) Scalability: Scaling is a very important aspect of
MSA and it is highly supported for utilizing resources as
per the dynamic requirements [14]. To achieve scaling, the
solution is introduced as a collection of small services
assisting to easily allocate resources upon the requirement
of the specific service. Resources such as memory, CPU,
disk usage, can be shared within services and more
resources will be allocated to those who need it, thus
reducing cost [11].

2) Flexibility: MSA has great flexibility in selecting
programing language and introduce new human resources
into the project effortlessly [8], [10]. If the solution requires
more services to develop, the industry has the flexibility to
selecting resources at any given time irrespective of its
programming skills and which language is used to
developed other services [11]. So this is a great advantage
that you couldn’t achieve from MA.

3) Unit Testing and Integrating Testing: The effect of
the unit testing is not much different in MSA and MA
domains, but MSA comprises some repeated works
(Rahman, and Gao, 2015). Further, the integration testing
is relatively more complex in the use of MSA because the
involvement of dependent services is significant with
respect to MA [4]. As a result, MSA requires more time and
effort to complete such testing.

4) Service Discovery: The main function of service
discovery is to incorporate new services into the solution
[4], [8]. It seems service discovery is an essential element
to implement with the solution for large-scale
microservices-based solutions because it should
automatically detect the services added into the echo
system and give zero downtime to the entire system.

5) Circuit Breaker: Circuit breaker is also an essential
feature for a solution and it is the approach to isolate the
faults automatically to prevent system failures due to an

issue with one service. So the main functionality of the
circuit breaker is to check the availability of independent
services and to start sending requests again upon the
availability of the dependent services up [14]. So, this is an
additional overhead that developers need to do.

B. Security

In one viewpoint, there is a benefit over security when it
comes to the MSA, if one service is open for vulnerability,
it is a matter of disabling that and allow the system to run as
usual with minimum impact [15]. In another viewpoint,
MSA influences security negatively due to network security
risk because each microservice communicates over the
network via messages. As a result, the internal attacker is in
a position to easily find out the message format and try to
sabotage the system. Following aspects discuss more details
about security aspects.

1) Web Application – Front End: With the MSA
there is a need of considering web applications
development as small features called micro-front-ends
(MFE). So, with the MFE architecture, if one function
breaches security or opens for vulnerability, it is easy to
disable such functions and the application is available to
users with less effect of user experience. On the other hand,
the security of each function needs to be validated
separately and all the developers who work in parallel on
services must have strong knowledge of web application
security such as disabling auto-filling on the text fields,
masking sensitive inputs typed on the text fields, handling
cookies securely in the browser level, keep token like
sensitive information in an encrypted format, etc [15].

2) Application Level – Back End: For the micro-
frond end architecture there are a set of microservices are
available to support backend services as well (Rahman, and
Gao, 2015). As mentioned earlier it is an advantage to
isolate service open for vulnerability and allow the system
to work smoothly. But achieving security standards for
each microservice is a more time taking task. Developers,
designers, and architects need to think about factors like
enabling HTTPS (transport layer security) for
intercommunications, secure database connectivity,
loading secrets and keys from secure stores such as vaults
solutions, etc [15]. Further, some application needs to
comply with client’s security requirement such as banking
guidelines for banking solution. Hence applying these
things to all the microservices is required extended time
and effort.

3) Source code: Microservices source code is kind of
repeating the same security approaches in multiple places.
So, the requirements like keeping passwords in encrypted
format in property configurations are going to be a big
overhead to the network because it is needed to load from
a centralized secure store; like vault solutions [15]. Hence,
when it is compared with MA source codes security with
MSA, has significant complexity.

4) Database: The best practice of MSA is to keep
separate databases for each service because when it is
required to scale up, the database also can be scaled up
separately [8], [15]. If the common database is used for all
the microservices, scaling only services is not enough and
a bottleneck can occur from the database side. From the

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

197

security perspective database, administrators have to
apply/configure security for databases separately and
which requires more time and effort.

5) Vulnerability Assessment and Penetration
Testing: For a production-ready application, a final check
is to assess vulnerabilities and do a security test which is
called penetration testing which covers CSS attacks, SQL
injection, CSRF, basically all the security standards are
defined by OWSAP application security verification
standards [15]. So, the preparation of testing and carry out
testing on each developed service and the deployed
environment is required extended effort than it is deployed
with MA.

C. Deployment

Deployment of MA is very easy because it is required
to deploy one or two applications in an application server
and high availability can be achieved through horizontally
scaling two or three nodes and required a minimum of two
databases for failover/replication [5]. But in MSA things are
different, it is required more tools like Docker and
Kubernetes and the industry needs to build a required skill
set to do a successful deployment. The entire deployment
process is in five main topics.

1) Docker: Docker is a containerized technology that
acts as a small machine and its configuration can be defined
by the DevOps engineer or architects to match with
particular service requirements. So, each microservice
developed for a solution can be configured as containers and
can run as small servers [16].

2) Kubernetes: On average, software solution is
comprised of a considerable amount of microservices and if
those run as Docker containers the same number of small
machines are running on top of the infrastructure and
managing them might be an arduous task. Hence
Kubernetes technology has introduced the capability of
managing docker-containers efficiently [8], [16]. So when
compared with MA this requires more works to achieve
sustainable MSA deployment.

3) Continuous integration and deployment (CI/CD):
CI/CD is a most important concern on any development
means it helps to automate the building of application and
deploy in test, staging, and then production environment
[16]. So, the CI/CD process incorporates automation of the
build process from development to production environment.
When it comes to the MSA building process it requires more
configuration.

4) Observability: Observability requirement is
consisted of log analytics, distributed tracing, and metrics
monitoring. There is a special toolset and most industries
use ELK stack for log analytics, elastic APM for metrics,
and Zipkin for distributed tracing which is an essential tool
for MSA [10]. So, to troubleshoot the issues this setup is
required for every deployment, and this is involved more
works.

5) Service mesh: Service mesh is a dedicated
communication layer that ensures reliable and safe
communication between services with high
observability[14]. It can handle high-volume
communication and uses existing persistent connections to

improve performance [17]. Implementing service mesh is
not mandatory with MSA but it can add benefits in service
discovery, load balancing, encryption, observability,
traceability, authentication, and authorization [14]. As
service mesh supports circuit breaker, it is no need to
develop that feature separately at the sourcecode level.

D. Reporting

Reporting in MSA is a bit complex. Because required
data for reporting is in individual microservices [3].
Followings are three approaches that can be used in report
generation, and each has its own drawbacks.

1) API-based Reporting: In this approach, reporting
service will extract data through API calls from each service
and it increases network traffic [8]. Further, the system tends
to unresponsive service calls due to hanging if users extract
data for long period.

2) Database-based Reporting: In this approach
single report service connect to each database owned by
other services [8], [12], [14], [15]. Drawbacks that are arisen
with the API approach can be overcome with this, but then
it breaks the basic principle of MSA because one service is
tightly coupled with all other services. If the developer
changes any logic or implementation which affects the data
structure on a particular service, the report service also
needs to be adjusted to address the changes.

3) Message Queue(s) based Reporting: This can be
considered as the best approach where each service sends an
event to a message queue and report service saves the
message into its own database [8]. Then data is available for
the reports without affecting any service. Although it is the
best approach, extra complexity is added to the environment
since additional message brokers need to be managed.

III. METHODOLOGY AND RESEARCH DESIGN

The methodology is introduced for having an overall
understanding of the use of microservices to fulfill the
requirements of the clients. Then the experiment design is
introduced based on derived methodology.

A. Methodology

The background analysis is the initiation for this
research with the use of experiences and available literature
until enough background understanding is obtained. Then
the overall understanding of the influencing factors is
achieved for continuing with the interview with SE
Professionals. The purposive sampling is used to filter out
the 5 key experts who work with MSA due to their
comprehensive understanding of MSA, and such data is
evaluated based on a thematic analysis approach. Then the
questionnaire is introduced incorporating background
information and interview findings, and it is shared among
the different stakeholders to obtain their opinion in a broader
sense. Then responses for the questionnaires are collected
for descriptive analysis due to their quantitative nature. As
a result, this research approach is a mixed method. Further,
findings are organized to recommend a theoretical
framework for SE Professionals to use for the betterment of
themselves as well as their clients.

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

198

B. Experimental design

As per the above methodology, the flowchart in Fig.1
is introduced as an experimental design, and the outcome of
this research is a theoretical framework for SE professionals
to use as guidance.

Fig. 1. Experimental design

 According to the flow chart in Fig.1, background
analysis was carried out to understand key components of
the MSA. Then checked whether that is sufficient to
influence the solution that going to propose in this study.
This cycle was carried out till the background understanding
is enough for the solution. Once it is sufficient, further that
evidence was confirmed by using interviews and
questionnaires. Zoom was used to conduct the interview
with SE industry professionals and the survey was delivered
as a Google form. This process was repeated until the
gathered information is being satisfied to introduce the
theoretical framework to adapt to MSA effectively.

IV. RESULT AND DISCUSSION

The interviews with SE professionals are extracted with
important information on the use of MSA focusing on the
benefits towards the client, and those qualitative data are
evaluated based on thematic analysis. Further, the
questionnaire is shared among the stakeholders of the
software industry to have an overall understanding of their
view towards the same goal as in Fig.2 and those
quantitative data is analyzed descriptively.

Fig. 2. Contributors for the Questionnaire.

A. Design & implementation requirements

As per the interviews conducted, the following extracts
are emphasized to convince the importance of the initial
design incorporating the relevant services.

“Representative of the client is a key stakeholder in the
software design process” - (SE Professional 1).

The above statement is true once the client is from a non-
technical background. However, the level of technical
knowledge is reflected on such initiatives as clients can
represent themselves throughout the software development
lifecycle analysis phase once there is adequate understand
of the technology. Such initiatives are positively influenced
in addressing the challenges of the MSA implementation.

“Bad designing would cause buying more time for
developers”- (SE Professional 2).

Design is important for having a shared understanding
between the development team and client from a technical
perspective and it streamlines the software engineering
development process with clear requirements avoiding
reworks. As per the above quotation, it is clear that improper
design wastes time due to a poor understanding of the
requirements, and it slows down the development process.

Fig. 3. Design and development phase.

Based on the above understanding, the findings of the
survey have also convinced the situation as per Fig.3. 73.1%
of responses on design effort are in the average or above
level so their primary focus is also on the design. Although
there is an extra effort in the designing phase if the industry
can manage reusable service repository to reuse the
predefined services, it is positively influenced to save more
time from coding and testing to deliver true benefit to the
client.

B. Security requirements

As per all the interviewees, the required level of security
should be achieved via MSA initiatives. The following
extract is about the security requirements of the client
applications.

“As the services are isolated, securing those are
relatively easy but each service should be addressed
separately to enrich the level of security” (SE Professional
2).

According to the above statement, the security of each
service is assured individually in MSA with the extra effort
for the implementation. Eventually, the vulnerability of
individual service is not influenced by the others so it is
possible to achieve an improved level of security at the end
as per the above statement.

Based on the survey findings, Figure 4 also illustrates
that better security is achieved in MSA having 80.7%
responses on/above the medium level of security. However,
the nature of the communication of services by using

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

199

messages introduces issues as described in section II, and it
reflects here having 11.5% responses for low security.

Fig. 4. Security feedback.

C. Deployment container requirements

The requirement for the deployment container is
emphasized in the interviews as following.

“Better monitoring strategies should be considered
during the deployment with properly planned infrastructure,
otherwise, maintenance will be hard.” (SE Professional 3).

As per the statement, it is clear the SE professionals
struggle with monitoring, deployment, and infrastructure
utilization support provided by MSA influencing the cost
factor of the client negatively due to the maintenance. But it
also mentions these concepts need to be properly planned,
which means there is a way that we can control the above
aspect to improve and give a cost-benefit for the client.

Further, the survey extracts the following information as
in Fig.5 with respect to the deployment infrastructure, and
73.1% of responses represent on/above average complexity
so it is an important finding on the true complexity of the
deployment. As a result, deployment complexity should be
addressed with proper tools then clients receive the benefit.
Further, infrastructure resource utilization is average/above
considering 84.7% of responses in that aspect, so client
solutions should be finalized with that understandings.

Fig. 5. Deployment Complexity and Infrastructure.

D. Client requirements

It is difficult to judge the client and it extracts per the
findings of the interviews as follow

“Client is always worried about the price and quality
but not the technology. It depends”

- SE Professional 2

Understanding the above statement is also clearly
illustrated in Fig.6 based on survey findings on how
industry experts answered their thoughts about the client
expectations. Most of the senior leadership accept clients’
most expectation for cost reduction and they do not rely on
the underlying technology while some also think
infrastructure resource utilization and product quality is
equally important.

Fig. 6. The perspective of SE professionals about their clients

Fig. 7. Theoretical framework for Microservices(MS) developments

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

200

As per overall understand, though MSA has challenges,
the industry continues on MSA solutions. But those
challenges indirectly support to increase in the cost of the
projects.

V. RECOMMENDATION

By considering the overall aspects of the use of MSA in
different aspects, it is recommended for the organization to
follow the basics before moving with MSA addressing the
specific requirements of the client in their design of the
solution. Incorporating an overall understanding of the
findings, a theoretical framework is introduced as a
guideline for SE professionals to use for evaluating
different possible options available for discussion among
all the stakeholders

In Fig.7, the high-level theoretical framework is
introduced based on the above literature, survey result, and
answers to the interview questions. Further our individual
experience is also used when retrieving some components
on the introduced framework. SE Professionals can use this
framework as a guideline for discussion catering to the exact
need of the client appropriately can be adapted. The
framework breaks into the following 8 major components;
Service Identification, Front-end Solution Layer,
Application Security Layer, Observability, Deployment
Platform, Data Stored Layer, and CI/CD integration layer.
Moreover, the framework is consists of Reporting, a Pre-
built Development Environment, Accessing Third Party
Services, and Data security.

A. Service indetification

As per the interview carried out with industry persons,
it is cleared design need get more times and hence
developers might facing some issue with delivering
implementation on time. Hence Service Identification
process is introduced to the theoretical framework so that
similarly services can be reuse without spending time on re-
developing the same thing. It is a process that an
organization should define. Based on the requirement SE
professionals need to break down the solution into
microservices, once finalized the services that they need to
check that defined services are in the organization service
repository which is a centralized code management system
(e.g. GitLab) and have a full set of functions that
microservice can do. So that the few services are utilized
from the repository and save the development time. Also
identified new services should be developed as reusable
components and need to add into a centralized service
repository to use by other projects.

Then to speed up development and minimize the re-
work pre-build development environment should be
available, for example, logging, auditing kind of common
concerns should be addressed by developing a library to
match with each programming language and need to build
into the development environment.

B. Front-end solution layer

This layer consists of applications where the end-user
interacts. Web and mobile APP can be considered as main
applications and sometimes another backend system may be
a front-end application. At a high level, any application or
system sending requests to the framework can be considered
as a front-end application. So when developing these front-

end applications if the organization can consider this as
micro-front ends, it can be reused in various similar needs
so that it will reduce time and effort.

C. Application security

Based on the literature review and result of interview
answers, it is clear that providing security to each individual
microservice is time-consuming work. Hence Application
security layer is introduced to the framework so that security
can be managed centrally. This layer mainly consists of API
gateway and Service discovery. The main function of API
gateway is to filter out malicious requests, authenticate and
authorize requests before they reach the deployment
platform. Also, throttling can be managed from this layer
where it can be configured number of concurrent requests
allowed for a particular API call. Hence focusing on each
individual service’s security can be avoided and it will be a
huge effort and time-saving for the organization and also
benefits can be transmitted to into client as well.

Service discovery controls what are the services
available in the deployment platform. So, if any service is
added to the platform, it will not be visible to the outside
(front-end layer) till that service is added to service
discovery. So the service discovery is playing a major role
to add services into the platform and remove services from
the platform and in that way, it will control service level
accessibility.

Once this layer is established there is no additional
effort to do with each microservice development and
deployment so it will help to overcome the drawback of
MSA security concerns and finally it saves a lot of money
for the organization.

D. Observability

Then the most important part of the framework is to set
up the one-time deployment platform and observability.
According to the understanding, we gathered from the data
analysis it was recognized log analytics and health
monitoring of microservice is very important. Observability
was added to the theoretical framework to achieve that
aspect. There are a lot of open-source tools to configure
observability to do log analytics, distributed tracing, and
monitoring which includes performance monitoring and
stats monitoring. So, when developing the microservices,
developers should not worry about the observability and the
underlying deployment framework will provide the
observability, so that application support after production
deployment won't be a hassle anymore and it addresses most
of the challenges discussed in the literature. Finally, it
benefits the organization in terms of resource and cost.

E. Deployment platform

Although MSA is used to strengthen the solution, one
key factor we extracted from the interview is if better
monitoring strategies were not accomplice when deploying
microservice there can arise maintenance issue. To
overcome that deployment platform is introduced with the
theoretical framework. The deployment platform consists of
Docker, Kubernetes, and MSA design partners like circuit
breakers and toolset to support the event sourcing especially
to full fill reporting requirements. At a high level, individual
microservices deploy in docker containers and these docker
containers are managed by Kubernetes. Also, Service mesh

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

201

can be introduced to facilitate and manage service to service
communication with fault tolerance way. So if an
organization can set up this one-time deployment
environment, services deployment will be very easy and all
the difficulties face once traditional services deployment
will be overcome. Further infrastructure wise it will be huge
cost saving when it considers the large scale of solution
deployments.

F. Data store layer

There should be a unified centralized place to store data
related to developed microservices. Data store layer is
added to the theoretical framework to have a completeness
over the entire solution when developing MSA. In this layer,
an organization can define any relational database like
MySQL, PostgreSQL, Oracle, or any NoSQL databases like
MongoDB. So this database server is centrally managed and
needs to create individual databases inside the server to cater
to each microservices unique requirements. So in that case
developer, no need to worry about the database management
part and a dedicated team will be taken care of the data store
layer and which will benefit in every means.

G. Cross-concern layer

In this framework, reporting (auditing), pre-built
development environment, accessing the third-party
services and data security can be considered as cross-
concern where this requires in most of the microservices.
So, if an organization can develop common frameworks for
these items there won't be any repeated tasks be carried out.
For example, if a service requires a report, it should be a
matter of enabling a flag in the configuration file or
annotate a particular function so that it will automatically
start to send some events into reporting service. So, with
minimum development effort developer will be able to
enable a particular feature. Similarly, if an organization can
come up with a common implementation that will give
more benefit than the traditional way of development while
addressing a lot of challenges faced in the practical
implementation of MSA.

H. CI/CD integration layer

This layer will reduce the deployment time which was
another concern raised by SE professionals. CI/CD defines
continuous integration and continuous deployment. So, with
this CI/CD implementation from source code development
to applications deployment into production can be
automated including executing unit tests, integration tests,
code quality checks, code security checks, vulnerability
checks, penetration testing, etc. To do this, a pipeline needs
to be created and configure according to the requirement.
Jenkins is a well-known tool for build automation. So once
deployed in the production, the service discovery module
should be capable of adding a new service into its registry.
By automating this complex deployment process it will be a
huge cost saving for any organization when working on
multiple projects because now you have a centralized
deployment platform to deploy and test the services before
delivering to the client which will be benefited for the client
in terms of the project cost and it also supports over to
overcome deployment complexity currently faced by
industries.

VI. CONCLUSION

There are a lot of researches carries out about MSA and
none of them has introduced proper implementation
guidelines. So in the literature review, identifies the features
of MSA architecture and also what are the limitations,
drawbacks, or challenges involved with them. Also, the
conducted survey with a specific set of questions identifies
how the industry accepts those challenges. Not only that but
also conducted interviews with SE professionals by asking
specific questions further implies the challenges they see
when implementing with MSA. Based on all the inputs,
although there are many benefits associated with MSA, it
can be unnecessarily complicated due to the different ways
in which it is used and some of its limitations. Proper use of
technologies with MSA can alleviate those difficulties. But
people in the software industry have different levels of
knowledge and they provide solutions according to their
point of view. Therefore, in some implementations, it is not
possible to get the real benefit of it. But if they have some
guidance to adapt, they can minimize the difficulties that
arise in SDLC. In this research, proposing a theoretical
framework as a solution to address each issue theoretically
and which will be easily implemented in the practical world
as well. Anyone can use it to upgrade every aspect of their
organization's SDLC. It will make both organizations and
clients are added benefits in time reduction, cost reduction
while giving high-quality software with high
maintainability.

REFERENCES

[1] A. Araujo and H. Moura, “Comlexity within Software
Development Projects: An Exploratory Overview,” 2015.
[Online]. Available: http://lattes.cnpq.br/0902980235660943

[2] J. C. Munson and T. M. Khoshgoftaar, “Measuring Dynamic
Program Complexity,” IEEE Software, vol. 9, no. 6, pp. 48–55,
1992, doi: 10.1109/52.168858.

[3] D. Shadija, M. Rezai, and R. Hill, “Towards an understanding of
microservices,” Oct. 2017. doi:
10.23919/IConAC.2017.8082018.

[4] Óbudai Egyetem, IEEE Hungary Section, M. IEEE Systems,
Hungarian Fuzzy Association, and Institute of Electrical and
Electronics Engineers, 18th IEEE International Symposium on
Computational Intelligence and Informatics : proceedings : 2018
November 21-22, Budapest.

[5] F. Tapia, M. ángel Mora, W. Fuertes, H. Aules, E. Flores, and T.
Toulkeridis, “From monolithic systems to microservices: A
comparative study of performance,” Applied Sciences
(Switzerland), vol. 10, no. 17, Sep. 2020, doi:
10.3390/app10175797.

[6] Z. Racheva, M. Daneva, and A. Herrmann, “A conceptual model
of client-driven agile requirements prioritization: Results of a
case study,” 2010. doi: 10.1145/1852786.1852837.

[7] N. bin Saif, M. Almohawes, and S. M. Jamail, “The impact of
user involvement in software development process,” Indonesian
Journal of Electrical Engineering and Computer Science, vol. 21,
no. 1, pp. 354–359, 2021, doi: 10.11591/ijeecs.v21.i1.pp.

[8] M. V. L. N. Venugopal, “Containerized Microservices
architecture,” International Journal of Engineering and Computer
Science, vol. 6, no. 11, Nov. 2017, doi: 10.18535/ijecs/v6i11.20.

[9] R. de Jesus Martins, R. B. Hecht, E. R. Machado, J. C. Nobre, J.
A. Wickboldt, and L. Z. Granville, “Micro-service Based
Network Management for Distributed Applications,” in
Advances in Intelligent Systems and Computing, 2020, vol. 1151
AISC, pp. 922–933. doi: 10.1007/978-3-030-44041-1_80.

[10] R. Boncea, A. Zamfiroiu, and I. Bacivarov, “A scalable
architecture for automated monitoring of microservices,” 2018.
[Online]. Available: http://www.antonkharenko.com

[11] A. de Camargo, R. dos Santos Mello, I. Salvadori, and F.
Siqueira, “An Architecture to Automate Performance Tests on
Microservices,” in ACM International Conference Proceeding
Series, Nov. 2016, pp. 422–429. doi: 10.1145/3011141.3011179.

Smart Computing and Systems Engineering, 2021
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

202

[12] A. D. M. del Esposte, F. Kon, F. M. Costa, and N. Lago,
“InterSCity: A scalable microservice-based open source platform
for smart cities,” in SMARTGREENS 2017 - Proceedings of the
6th International Conference on Smart Cities and Green ICT
Systems, 2017, pp. 35–46. doi: 10.5220/0006306200350046.

[13] N. Herzberg, C. Hochreiner, O. Kopp, and J. Lenhard,
“Proceedings of the 10th ZEUS Workshop,” 2018. [Online].
Available: https://www.researchgate.net/publication/324517504

[14] S. S. de Toledo, A. Martini, and D. I. K. Sjøberg, “Identifying
architectural technical debt, principal, and interest in
microservices: A multiple-case study,” Journal of Systems and
Software, vol. 177, Jul. 2021, doi: 10.1016/j.jss.2021.110968.

[15] N. Mateus-Coelho, M. Cruz-Cunha, and L. G. Ferreira, “Security
in microservices architectures,” in Procedia Computer Science,
2021, vol. 181, pp. 1225–1236. doi: 10.1016/j.procs.2021.01.320.

[16] A. Raj, K. S. Jasmine, and P. G. Student, “Building Microservices
with Docker Compose.”

[17] “What Is a Service Mesh? - NGINX.” https://www.nginx.com
/blog/what-is-a-service-mesh/ (accessed Jul. 15, 2021).

