
Smart Computing and Systems Engineering, 2021 
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka 

 

230 

 

 

Paper No: SE-15 Systems Engineering 

Docker incorporation is different from other 

computer system infrastructures: A review 
 

W. M. C. J. T. Kithulwatta* 
Faculty of Graduate Studies,  

 Sabaragamuwa University of Sri Lanka, Sri Lanka 
chiranthajtk@gmail.com 

 
B. T. G. S. Kumara 

Dept. of Computing & Information Systems, Fac. of Applied 
Sciences, Sabaragamuwa University of Sri Lanka, Sri Lanka 

kumara@appsc.sab.ac.lk 

 
K. P. N. Jayasena 

Dept. of Computing & Information Systems, Fac. of Applied 
Sciences, Sabaragamuwa University of Sri Lanka, Sri Lanka 

pubudu@appsc.sab.ac.lk 
 

R. M. K. T. Rathnayaka 
Department of Physical Sciences & Technology, Fac. of Applied 

Sciences, Sabaragamuwa University of Sri Lanka, Sri Lanka 
kapilar@appsc.sab.ac.lk

 

Abstract - Currently the computing world is getting 
complex, innovating and maturing with modern technologies.  
Virtualization is one of the old concepts and currently 
containerization has arrived as an alternative and innovative 
technology. Docker is the most famous and trending container 
management technology.  Different other container 
management technologies and virtualization technologies are 
respective other corresponding technologies and mechanisms 
for Docker containerization. This research study aims to 
identify how Docker incorporation is different from other 
computer system infrastructure technologies in the 
perspective of architecture, features and qualities. By 
considering forty-five existing literatures, this research study 
was conducted. To deliver a structured review process, a 
thorough review protocol was conducted. By considering four 
main research questions, the research study was lined up. 
Ultimately, Docker architecture and Docker components, 
Docker features, Docker integration with other computing 
domains and Docker & other computing infrastructures were 
studied. After synthesizing all the selected research studies, 
the cream was obtained with plenty of knowledge 
contribution to the field of computer application deployment 
and infrastructure.  

Keywords - computer infrastructure, containers, docker, 
virtualization, virtual machines 

I. INTRODUCTION 

Computer virtualization has existed for a long time. As 
well, virtualization is an old conceptualization within the 
computing domain. Traditionally, most information 
technology (IT) services are bound with hardware 
components and virtualization enables those services in a 
virtual manner [1]. A software component called 
hypervisor, creates separate physical resources in the virtual 
environment. The hypervisor keeps on top of an operating 
system and ultimately, the virtual machine makes the 
interaction between end-users and the computing system. 
Figure 1 presents the virtualization stack architecture. 

On top of any hardware platform, an operating system 
was launched and on top of that operating system, the 
hypervisor was launched. On the hypervisor, each virtual 
machine carries the full functional operating system. Each 
virtual machine provides a separated environment for the 
software applications and services. 

Within virtualization, each virtual machine has a heavy 
weight since a virtual machine has a full set of functional 
operating systems. Therefore, an alternative and novel 
concept was arrived called containerization.  Within the 
containerization, containers play a major role. 

 

 
Fig. 1. Virtualization architecture [2] 

Figure 2 presents the container architecture as a 
pictorial way [2]. According to the container architecture, 
it consists of a container engine instead of the hypervisor. 
On the container engine, each container keeps a packaged 
environment by including all fundamental dependencies to 
run the software applications. Each container provides an 
isolated environment for the software applications from the 
host computer infrastructure and other containers. 

 
Fig. 2: Container architecture [2] 

 

II. MOTIVATION 

Within the practitioner of the containers, Docker is one 
of the available container management technologies. Other 
than Docker: Rkt and Linux containers are available as 
container technologies.   



Smart Computing and Systems Engineering, 2021 
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka 

 

231 

 

 

 According to the official Docker documentation 
website, more than eleven million developers are engaged 
for Docker developments. As well, more than seven million 
Docker based software applications are made. More than 
thirteen billion Docker images are downloaded for the 
Docker based practitioner usages [3].   

As mentioned in the official Docker documentation, 
most of the widely used computing tools are engaged with 
Docker containerization. Few of them are Bitbucket, 
GitLab, GitHub, NGINX, Redis, Jenkins, JFrog, 
MongoDB, Visual Studio Code, etc. [3].  

Currently most industries and clients are using Docker 
oriented software applications and few of those clients are 
Paypal, Adobe, Netflix, University of Calgary, PathFactory, 
etc. [3]. Furthermore, Docker trusted contents are offered by 
Docker verified publishers as reliable Docker packaged 
blocks. Some of those publishers are Amazon Web Services 
(AWS), RedHat, Datadog, etc. [3].  

Therefore, it depicts that Docker has higher practitioner 
engagement. Hence Docker is having a higher trend within 
the practical approach. Currently there is a higher 
competition for Docker among other container technologies 
and other infrastructure approaches like virtual instances. 
This research study was designed to identify the differences 
for Docker with other computer system infrastructure 
approaches.  

The overall research study brings answers for the below 
research questions (RQs).  

RQ1: What kinds of components are embedded in the 
Docker architecture?  

RQ2: What kind of benefits are available for the 
Docker based container approaches?  

RQ3: What kind of computing areas/domains are 
integrated with Docker?  

RQ4: How do Docker and other infrastructure 
approaches differ? 

III. RESEARCH METHODOLOGY 

To obtain a thorough review analysis, the research 
study followed a highly structured review protocol. The 
ultimate review protocol is with eight steps. Table I presents 
the applied protocol as steps. The table I is with three 
columns. The first column presents the review protocol step 
number, second column presents the respective step name 
and third column presents the step in more descriptively.   

TABLE I. REVIEW PROTOCOL IN STEPS 

Step 

Number 
Step Name Step in Detail 

Step 1 

Need for the 

review 

Identify the need for the review and the 

need was identified at section II.   

Step 2 
Research 

Questions 

Declare the research questions and 

research questions were identified at 

section II.  

Step 3 
Identify the 

search strings 

The search string was declared to select 

primary literatures. The identified 

search string was declared below (1).  

Step 4 

Primary 

literature 

selection 

By using the identified search string, 

primary literatures were selected. The 

search string was browsed in the 

Google Scholar. Then primary studies 

were selected from the scientific 

databases including IEEE-Xplore, 

Step 

Number 
Step Name Step in Detail 

ACM Digital Library, Springer and 

Science Direct.  

Step 5 
Inclusion/ 

Exclusion 

To filter the papers from the domain, 

the paper inclusion and exclusion 

criteria was applied.  

Step 6 
Quality 

Assessment 

To filter the inapplicable literatures 

from the primary literature bulk, paper 

quality assessment was executed. After 

the process, 45 papers were finalized.  

Step 7 Synthesizing 
On top of the selected papers, the 

synthesizing was applied.  

Step 8 
Final 

reporting  

By including the final observations, 

investigations and results of the 

research study, a final research report 

was made. 

 

The search string: 

(Docker)˄[(infrastructure)˅(cloud)˅(containers)] () 

Other than the scientific databases, the official Docker 
documentation website was used as primary literature to 
identify the latest updates on Docker container technology.   

For the review study, the research papers were selected 
by applying the search string. Docker container technology 
was introduced in 2013. Hence the selected literatures were 
published from 2014 to 2020. The table II presents the all 
referred literatures. The table II is with two columns: first 
column is for the study topic and second column is for the 
citation number. 

TABLE II.  THE LIST OF SELECTED LITERATURES 

Topic of the Literature 
Citation 

Number 

What is Virtualization? [1] 

Exploring the support for high performance 

applications in the container runtime environment 
[2] 

Empowering App Development for Developers | 

Docker 
[3] 

Docker overview [4] 

Containers & Docker: Emerging roles & future of 

Cloud technology 
[5] 

Advantages of Docker [6] 

Performance comparison between Linux containers 

and virtual machines 
[7] 

An Introduction to Docker and Analysis of its 

Performance 
[8] 

Performance Comparison Analysis of Linux Container 

and Virtual Machine for Building Cloud 
[9] 

An updated performance comparison of virtual 

machines and Linux containers 
[10] 

Virtualization and containerization of application 

infrastructure: A comparison 
[11] 

A Comparative Study of Containers and Virtual 

Machines in Big Data Environment 
[12] 

Evaluation of Docker as Edge Computing Platform [13] 

Using Docker in High Performance Computing 

Applications 
[14] 

The research and implementation of cloud computing 

platform based on Docker 
[15] 

A Study of Security Vulnerabilities on Docker Hub [16] 

Evaluation of Docker Containers Based on Hardware 

Utilization 
[17] 

Docker Cluster Management for the Cloud - Survey 

Results and Own Solution 
[18] 



Smart Computing and Systems Engineering, 2021 
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka 

 

232 

 

 

Topic of the Literature 
Citation 

Number 

Leveraging microservices architecture by using 

Docker technology 
[19] 

To Docker or Not to Docker: A Security Perspective [20] 

Measuring Docker Performance: What a mess!!!* [21] 

Containers and Cloud: From LXC to Docker to 

Kubernetes 
[22] 

Docker ecosystem – Vulnerability Analysis [23] 

Distributed Systems of Microservices Using Docker 

and Serfnode 
[24] 

Model-Driven Management of Docker Containers [25] 

Feasibility of Fog Computing Deployment based on 

Docker Containerization over RaspberryPi 
[26] 

Improvement of Container Scheduling for Docker 

using Ant Colony Optimization 
[27] 

Using Docker Containers to Improve Reproducibility 

in Software and Web Engineering Research 
[28] 

Autonomic Vertical Elasticity of Docker Containers 

with ELASTICDOCKER 
[29] 

Integrating Containers into Workflows: A Case Study 

Using Makeflow, Work Queue, and Docker 
[30] 

DIVDS: Docker Image Vulnerability Diagnostic 

System 
[31] 

Orchestrating Docker Containers in the HPC 

Environment 
[32] 

A Docker Container Anomaly Monitoring System 

Based on Optimized Isolation Forest 
[33] 

An Empirical Analysis of the Docker Container 

Ecosystem on GitHub 
[34] 

Containers & Docker: Emerging Roles & Future of 

Cloud Technology 
[35] 

In Search of the Ideal Storage Configuration for 

Docker Containers 
[36] 

Measurement and Evaluation for Docker Container 

Networking 
[37] 

Building A Virtual System of Systems Using Docker 

Swarm in Multiple Clouds 
[38] 

A Defense Method against Docker Escape Attack [39] 

DoCloud: An elastic cloud platform for Web 

applications based on Docker 
[40] 

CoMICon: A Co-operative Management System for 

Docker Container Images 
[41] 

FID: A Faster Image Distribution System for Docker 

Platform 
[42] 

Orchestration of Containerized Microservices for IIoT 

using Docker 
[43] 

A Holistic Evaluation of Docker Containers for 

Interfering Microservices 
[44] 

Application deployment using Microservice and 

Docker containers:Framework and optimization 
[45] 

 

IV. DOCKER ARCHITECTURE 

The Fig. 3 presents the Docker architecture in a 
pictorial view. To design the fundamental Docker 
architecture, client and server architecture has been used.  
Docker daemon, Docker client and Docker registries are 
the main components for the Docker architecture [4 

The Docker daemon has a main responsibility to 
manage Docker objects. Main Docker objects are 
containers, images, volumes and network. One Docker 
daemon can communicate with other Docker daemons. To 
make the interaction with Docker, Docker client was used 
as the fundamental way. While using the Docker 
commands on the Docker client, it sends those commands 
to Docker daemon. One Docker client can communicate 
with more than one Docker daemons [4]. 

 

Fig. 3: Docker architecture [4] 

 

The Docker daemon has a main responsibility to 
manage Docker objects. Main Docker objects are 
containers, images, volumes and network. One Docker 
daemon can communicate with other Docker daemons. To 
make the interaction with Docker, Docker client was used 
as the fundamental way. While using the Docker commands 
on the Docker client, it sends those commands to Docker 
daemon. One Docker client can communicate with more 
than one Docker daemons [4].   

Docker client and Docker daemon can be executed on 
the same infrastructure. According to the designed way, 
Docker client can be connected to a remote Docker daemon 
[4]. 

To store and archive the Docker images, a dedicated 
location was allocated in the Docker architecture called 
Docker registry. According to the use-cases, publicly 
available Docker registry or private Docker registries can be 
used. Users can pull Docker images from the Docker 
registry or push the Docker images to Docker registry [4].  

Docker image is one of the most important parts of the 
Docker architecture and it consists of a read-only template 
with a set of instructions to create a Docker container. By 
using a Dockerfile, specific Docker images can be created. 
As well, Docker container is the executable instance of a 
Docker image. By using Docker application programming 
interface or command line interface, Docker containers can 
be created, stopped, started, moved or deleted [4].    

V. DOCKER FEATURES 

This section emphasizes the Docker related advantages, 
incorporations and compatibility of the Docker with other 
computing technologies.  

A. Docker Advantages 

Table III presents the Docker advantages in a more 
advanced way.  The first column denotes the Docker 
advantages and the second column denotes the advantages 
more descriptively.  

B. Docker Integrated Areas/Domains/Communities 

The Docker containerized technology is not only 
dedicated as the software application deploying 
environment. According to the referred literature studies, 
Docker container technology was integrated with different 
computing domains and areas. As a summarized list, the 
below list presents those Docker engaged computing areas 
[1] - [45]. 

• Edge Computing 

• Computer Networking 



Smart Computing and Systems Engineering, 2021 
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka 

 

233 

 

 

• Cloud Computing 

• Computer Security 

• Grid Computing 

• Distributed Computing  

• Operating Systems 

• Web Engineering 

• High Performance Computing 

• System Engineering 

• Internet of Things 

• Autonomous Computing 

• Parallel Computing 

• Microservices 

 

Hence, the above list depicts that Docker was spread in 
a variety of computing domains. Within the above domains, 
Docker was used as a runtime environment, virtualization 
and an operating system. Mainly, Docker was used for 
development, testing, deploying and experimenting 
purposes. 

TABLE III.  DOCKER ADVANTAGES 

Docker Advantage Advantage in more Descriptively  

 Lightweight  

Docker is with lightweight containers and 

images than traditional virtual machines. 

Since traditional virtual machines carry a full 

set of operating systems, a virtual machine is 

heavy weight. Furthermore, one virtual 

machine consumes heavy resources from the 

host computer infrastructure to execute a full 

set of operating systems [5].  

Portable 

Docker containers and images can be moved 

as one module within any computer system 

infrastructure easily: therefore, Docker is 

portable. Due to the portability, Docker 

images can be shared with different hosts 

easily. However, traditional virtual machines 

can be moved within different hosts but it is 

more heavy and has to follow more steps [5] 

[6].   

Scalability 

Docker is providing a facility to scale the 

Docker containers and services by up and/or 

down the number of replicas. Docker takes 

the responsibility to upgrade or downgrade 

the number of replicas very smoothly, without 

making any effect on the software service. 

Therefore, Docker can be provisioned more 

easily than the virtual machines [7].  

Best fit for 

microservices 

According to the microservices architecture, 

software applications need a separated and 

isolated environment. Therefore, Docker 

makes an isolated environment within the 

Docker containers and it helps to give the best 

software environment for the microservices 

softwares. Without making any conflicts with 

other modules or components, Docker 

provides the best fit for microservices [7].  

Optimal resource 

utilization 

Docker container structure shares the host 

computer resources among the Docker 

objects. Docker has the facility to allocate 

limitations for each Docker object to utilize 

the host memory, CPU, disk space and 

network. Due to those limitations and 

constraints, Docker has optimal resource 

utilization [5]. 

 

As well, Docker container technology has presented an 
excellent research path in computing. Research scholars 
have presented that Docker brings a strong research 
direction.  

For the government of Docker or other container farms, 
container orchestration solutions are needed. Therefore, 
Kubernetes has been identified as the best fit for Docker 
container orchestration with amazing and fantastic features 
& functions. Mainly identified Kubernetes features for 
Docker are automatic rollouts, automated roll backs, storage 
orchestration, load balancing, service discovery, 
configuration management, batch execution, horizontal 
scaling, self-healing, automated bin packing, etc.  

C. Docker and Other Corresponding Approaches 

Docker has been identified as the best computer 
infrastructure for the software application deployments. 
Other than Docker, there are different kinds of container 
management technologies and virtual environments. Most 
scholars have made different comparisons among Docker 
and other corresponding approaches.  

Virtual machines use an extra layer called hypervisor 
and the hypervisor is between the host operating system and 
guest operating system (Figure 1 presents the location of the 
hypervisor according to the virtualization architecture). 
However, containers add up an additional layer between the 
host operating system and where the applications are 
virtualized and executed. It was known as a container 
engine. Since containers do not use any guest operating 
system, it makes a considerable performance difference 
between container technology and virtual machine 
technology [8].   

Below tables IV, V and VI present the performances of 
different container vendors and virtual machines. According 
to the paper [9], Docker container performance is better than 
KVM (Kernel-based Virtual Machines) in terms of boot 
time and calculation speed [9]. But another research paper 
has proved that there is no difference of wastage of host 
resources between Docker and KVM but there is a 
noticeable difference in execution as KVM is faster than 
Docker containers [10]. The research paper [11] has 
presented that LXC (Linux Containers) takes a longer time 
to accomplish a defined task. But XenServer took less time 
than LXC. LXC is a better container in the sense of fewer 
wasted resources while Xen is better in the sense of equally 
distributing resources. 

TABLE IV.  DOCKER AND KVM 

 Reference: [9]  

Docker KVM 

 Short boot time Long boot time 

Calculation speed is faster Calculation speed is slower 

No guest operating system Works independently  

 
According to the above summarized Table IV, KVM is 

working independently due to KVM having a hypervisor 
and Docker has no guest operating system. But Docker 
shares the host operating system resources. 

As mentioned in the literature,  LXC consumes less 
overhead on the parameter of host computer resources. 
Same as that, XenServer has consumed more overhead. The 



Smart Computing and Systems Engineering, 2021 
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka 

 

234 

 

 

author has identified that XenServer was better in the sense 
of distributing host computer resources equally. But LXC 
was not like that and LXC was better in the sense of 
executing fully isolated processors [11]. 

TABLE V.  XEN-SERVER AND COREOS 

Reference: [11] 

XenServer (Xen) CoreOS (LXC) 

More overhead (regarding 

wastage of resources) 

Less overhead (regarding 

wastage of resources) 

Less time to accomplish request 
Longer time to accomplish 

request 

Better in sense of equally 

distributing resources 

Better in sense of executing 

isolated processes 

 
According to the above summarized Table VI, Docker 

and KVM have presented a more mature innovation than 
native approach. As well, KVM has demonstrated very less 
host computer resources wastage than both native and 
Docker approaches.   

TABLE VI.  NATIVE, DOCKER AND KVM 

Reference: [10]  

Native Docker KVM 

Overhead (regarding 

wastage of 

resources) 

Slightly less 

overhead than native  

Slightly less 

overhead than native 

and Docker 

Slow execution 

equal to Docker  

Slow execution 

equal to native 
Fast execution 

- Mature innovation Mature innovation 

 

Apart from the above comparisons, a recent research 
paper has presented differences between containers and 
virtual machines.    A container consists of executable 
software application binaries and executable codes. All 
fundamentally necessary software dependencies need to run 
a container. Containers are using Linux kernel mechanisms 
to allocate resources. The authors have said that engineers 
can allow allocating resources for the containers like 
network configurations, CPU and memory at the time of 
container creation. The allocated resources may be adjusted 
dynamically but any container cannot use more resources 
than being specified [12]. 

The paper [12] has expressed that, the first difference 
between containers and virtual machines is: containers are 
more lightweight than virtual machines. The due reason is: 
containers include only executable applications and their 
dependencies. The containers which are on the same 
machine, share the host operating system resources among 
containers. Respective virtual machines do not share the 
host operating system resources. Virtual machines contain a 
full set of operating systems. Furthermore, the same paper 
[12] has presented that virtual machines can run as any 
operating system that is different from the host machine. But 
containers need to use the same operating system as the host 
machine.  

The authors of the paper [12] have presented the second 
comparison on the hypervisor. For the virtual machine 
environment, the hypervisor is necessary to use such as 
VMware ESXi and KVM. It is not required for containers. 
Virtual machines are functioning as an independent 

machine by keeping all control of all resources under the 
virtual machines. Furthermore, virtual machines are running 
as non-privileged mode and containers are running on 
privileged mode. It depicts that virtual machines cannot 
execute many privileged instructions. As well as, for the 
execution of instructions, the virtual machine environment 
is needed to translate all virtual machine instructions to 
executable commands to which that needs to run on the host. 
However, containers make communication with the host 
directly by system calls and it does not require any 
intermediate mechanism to convert instructions [12]. 

Furthermore, the paper [12] has discussed image files 
of virtual machines and containers. Virtual machines have 
their own images and containers share some of their images. 
Container images are created as a layered architecture. To 
create an image on an existing image, the platform adds 
another layer on the original image. Image files of different 
virtual machines are isolated from each other [12]. 

The authors of [12] have presented their research 
findings as researchers and practitioners pay their attention 
to containers instead of virtual machines. Containers are 
more cost-effective. Furthermore, containers usually consist 
of tens of Megabytes (MB) while virtual machines can take 
about several Gigabytes (GB). To run an application, a 
container uses very fewer resources than virtual machines 
due to containers not needing to maintain an operating 
system. Containerized platforms do not contain any 
hypervisor and containers present more performance than 
virtual machines [12]. 

VI. CONCLUSIONS 

Containerization was identified as an alternative for 
virtualization. Within the practitioner of the container 
management technologies, Docker keeps and plays a major 
role. Currently millions and billions of customer 
interactions are with Docker container management. Docker 
has client and server architecture. As well, Docker daemon, 
Docker client, Docker registry and Docker objects play 
main roles in the Docker platform. Those components and 
modules help to carry answers for the RQ1. Docker has 
many available features and benefits. Some of them are 
scalability, portability, lightweight, best fit for 
microservices and optimal resource utilization. Hence those 
features provide the answers to the RQ2. 

Without limiting to software application launching on 
Docker, Docker containerization was engaged with many 
computing technologies. Few of them are fog computing, 
cloud computing, grid computing, Internet of Things, 
microservices, etc. Those are answered to the RQ3. As 
presented above in the V.C section, many of Docker and 
other infrastructure technologies were discussed. Hence 
those are answered to the RQ4.  

The scholarly research articles present that Docker has 
a higher engagement with all kinds of computing 
technologies. Docker plays a major role in computer system 
administration engineering.  

REFERENCES 

[1]  "What is Virtualization? ", 2021. [Online]. Available: 
https://www.redhat.com/en/topics/virtualization/what-is-
virtualization [Accessed: 09- Jul- 2021]. 

[2]  J. Martin, A. Kandasamy and K. Chandrasekaran, "Exploring the 
support for high performance applications in the container 
runtime environment", Human-centric Computing and 



Smart Computing and Systems Engineering, 2021 
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka 

 

235 

 

 

Information Sciences, vol. 8, no. 1, 2018. Available: 
10.1186/s13673-017-0124-3 

[3]  "Empowering App Development for Developers | Docker", 
Docker, 2021. [Online]. Available: https://www.docker.com/. 
[Accessed: 09- Jul- 2021]. 

[4]  "Docker overview", Docker Documentation, 2021. [Online]. 
Available: https://docs.docker.com/get-started/overview/. 
[Accessed: 09- Jul- 2021]. 

[5]  S. Singh and N. Singh, "Containers & Docker: Emerging roles & 
future of Cloud technology," 2016 2nd International Conference 
on Applied and Theoretical Computing and Communication 
Technology (iCATccT), 2016, pp. 804-807, doi: 
10.1109/ICATCCT.2016.7912109. 

[6]  Vase, Tuomas. “Advantages of Docker.” (2015). 
[7]  A. M. Joy, "Performance comparison between Linux containers 

and virtual machines," 2015 International Conference on 
Advances in Computer Engineering and Applications, 2015, pp. 
342-346, doi: 10.1109/ICACEA.2015.7164727. 

[8]  B. B. Rad, H. J. Bhatti, M. Ahmadi, "An Introduction to Docker 
and Analysis of its Performance", IJCSNS International Journal 
of Computer Science and Network Security, vol. 17, no. 3, March 
2017. 

[9]  K. Seo, H. Hwang, I. Moon, O. Kwon and B. Kim, "Performance 
Comparison Analysis of Linux Container and Virtual Machine for 
Building Cloud", 2014. Available: 10.14257/astl.2014.66.25. 

[10]  W. Felter, A. Ferreira, R. Rajamony and J. Rubio, "An updated 
performance comparison of virtual machines and Linux 
containers," 2015 IEEE International Symposium on 
Performance Analysis of Systems and Software (ISPASS), 2015, 
pp. 171-172, doi: 10.1109/ISPASS.2015.7095802. 

[11]  M. J. Scheepers, "Virtualization and containerization of 
application infrastructure: A comparison", 21st Twente Student 
Conference on IT, pp. 1-7, 2014 

[12]  Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu and W. Zhou, "A 
Comparative Study of Containers and Virtual Machines in Big 
Data Environment," 2018 IEEE 11th International Conference on 
Cloud Computing (CLOUD), 2018, pp. 178-185, doi: 
10.1109/CLOUD.2018.00030. 

[13]  B. I. Ismail et al., "Evaluation of Docker as Edge computing 
platform," 2015 IEEE Conference on Open Systems (ICOS), 
2015, pp. 130-135, doi: 10.1109/ICOS.2015.7377291. 

[14]  M. T. Chung, N. Quang-Hung, M. Nguyen and N. Thoai, "Using 
Docker in high performance computing applications," 2016 IEEE 
Sixth International Conference on Communications and 
Electronics (ICCE), 2016, pp. 52-57, doi: 
10.1109/CCE.2016.7562612. 

[15]  D. Liu and L. Zhao, "The research and implementation of cloud 
computing platform based on docker," 2014 11th International 
Computer Conference on Wavelet Actiev Media Technology and 
Information Processing(ICCWAMTIP), 2014, pp. 475-478, doi: 
10.1109/ICCWAMTIP.2014.7073453. 

[16]  R. Shu, X. Gu and W. Enck, "A Study of Security Vulnerabilities 
on Docker Hub", Proceedings of the Seventh ACM on 
Conference on Data and Application Security and Privacy, 2017, 
pp.269-280, doi: 10.1145/3029806.3029832 

[17]  Preeth E N, F. J. P. Mulerickal, B. Paul and Y. Sastri, "Evaluation 
of Docker containers based on hardware utilization," 2015 
International Conference on Control Communication & 
Computing India (ICCC), 2015, pp. 697-700, doi: 
10.1109/ICCC.2015.7432984. 

[18]  R. Peinl, F. Holzschuher and F. Pfitzer, "Docker Cluster 
Management for the Cloud - Survey Results and Own Solution", 
Journal of Grid Computing, vol. 14, no. 2, pp. 265-282, 2016. doi: 
10.1007/s10723-016-9366-y. 

[19]  D. Jaramillo, D. V. Nguyen and R. Smart, "Leveraging 
microservices architecture by using Docker technology," 
SoutheastCon 2016, 2016, pp. 1-5, doi: 
10.1109/SECON.2016.7506647. 

[20]  T. Combe, A. Martin and R. Di Pietro, "To Docker or Not to 
Docker: A Security Perspective," in IEEE Cloud Computing, vol. 
3, no. 5, pp. 54-62, Sept.-Oct. 2016, doi: 10.1109/MCC.2016.100. 

[21]  E. Casalicchio and V. Perciballi, "Measuring Docker 
Performance", Proceedings of the 8th ACM/SPEC on 
International Conference on Performance Engineering 
Companion, 2017, pp. 11-16, doi: 10.1145/3053600.3053605. 

[22]  D. Bernstein, "Containers and Cloud: From LXC to Docker to 
Kubernetes," in IEEE Cloud Computing, vol. 1, no. 3, pp. 81-84, 
Sept. 2014, doi: 10.1109/MCC.2014.51. 

[23]  A. Martin, S. Raponi, T. Combe and R. Di Pietro, "Docker 
ecosystem – Vulnerability Analysis", Computer 

Communications, vol. 122, pp. 30-43, 2018. doi: 
10.1016/j.comcom.2018.03.011. 

[24]  J. Stubbs, W. Moreira and R. Dooley, "Distributed Systems of 
Microservices Using Docker and Serfnode," 2015 7th 
International Workshop on Science Gateways, 2015, pp. 34-39, 
doi: 10.1109/IWSG.2015.16. 

[25]  F. Paraiso, S. Challita, Y. Al-Dhuraibi and P. Merle, "Model-
Driven Management of Docker Containers," 2016 IEEE 9th 
International Conference on Cloud Computing (CLOUD), 2016, 
pp. 718-725, doi: 10.1109/CLOUD.2016.0100. 

[26]  P. Bellavista and A. Zanni, "Feasibility of Fog Computing 
Deployment based on Docker Containerization over 
RaspberryPi", Proceedings of the 18th International Conference 
on Distributed Computing and Networking, 2017, pp. 1-10  doi: 
10.1145/3007748.3007777. 

[27]  C. Kaewkasi and K. Chuenmuneewong, "Improvement of 
container scheduling for Docker using Ant Colony 
Optimization," 2017 9th International Conference on Knowledge 
and Smart Technology (KST), 2017, pp. 254-259, doi: 
10.1109/KST.2017.7886112. 

[28]  J. Cito and H. C. Gall, "Using Docker Containers to Improve 
Reproducibility in Software Engineering Research," 2016 
IEEE/ACM 38th International Conference on Software 
Engineering Companion (ICSE-C), 2016, pp. 906-907. 

[29]  Y. Al-Dhuraibi, F. Paraiso, N. Djarallah and P. Merle, 
"Autonomic Vertical Elasticity of Docker Containers with 
ELASTICDOCKER," 2017 IEEE 10th International Conference 
on Cloud Computing (CLOUD), 2017, pp. 472-479, doi: 
10.1109/CLOUD.2017.67. 

[30]  C. Zheng and D. Thain, "Integrating Containers into Workflows: 
A Case Study Using Makeflow, Work Queue, and Docker ", 
Proceedings of the 8th International Workshop on Virtualization 
Technologies in Distributed Computing, 2015, pp. 31-38 doi: 
10.1145/2755979.2755984. 

[31]  S. Kwon and J. Lee, "DIVDS: Docker Image Vulnerability 
Diagnostic System," in IEEE Access, vol. 8, pp. 42666-42673, 
2020, doi: 10.1109/ACCESS.2020.2976874. 

[32]  J. Higgins, V. Holmes and C. Venters, "Orchestrating Docker 
Containers in the HPC Environment", Lecture Notes in Computer 
Science, pp. 506-513, 2015. doi: 10.1007/978-3-319-20119-
1_36. 

[33]  Z. Zou, Y. Xie, K. Huang, G. Xu, D. Feng and D. Long, "A 
Docker Container Anomaly Monitoring System Based on 
Optimized Isolation Forest," in IEEE Transactions on Cloud 
Computing, doi: 10.1109/TCC.2019.2935724. 

[34]  J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi and 
H. C. Gall, "An Empirical Analysis of the Docker Container 
Ecosystem on GitHub," 2017 IEEE/ACM 14th International 
Conference on Mining Software Repositories (MSR), 2017, pp. 
323-333, doi: 10.1109/MSR.2017.67. 

[35]  S. Singh and N. Singh, "Containers & Docker: Emerging roles & 
future of Cloud technology," 2016 2nd International Conference 
on Applied and Theoretical Computing and Communication 
Technology (iCATccT), 2016, pp. 804-807, doi: 
10.1109/ICATCCT.2016.7912109. 

[36]  V. Tarasov et al., "In Search of the Ideal Storage Configuration 
for Docker Containers," 2017 IEEE 2nd International Workshops 
on Foundations and Applications of Self* Systems (FAS*W), 
2017, pp. 199-206, doi: 10.1109/FAS-W.2017.148. 

[37]  H. Zeng, B. Wang, W. Deng and W. Zhang, "Measurement and 
Evaluation for Docker Container Networking," 2017 
International Conference on Cyber-Enabled Distributed 
Computing and Knowledge Discovery (CyberC), 2017, pp. 105-
108, doi: 10.1109/CyberC.2017.78. 

[38]  N. Naik, "Building a virtual system of systems using docker 
swarm in multiple clouds," 2016 IEEE International Symposium 
on Systems Engineering (ISSE), 2016, pp. 1-3, doi: 
10.1109/SysEng.2016.7753148. 

[39]  Z. Jian and L. Chen, "A Defense Method against Docker Escape 
Attack", Proceedings of the 2017 International Conference on 
Cryptography, Security and Privacy - ICCSP '17, 2017, pp. 142-
146, doi: 10.1145/3058060.3058085. 

[40]  C. Kan, "DoCloud: An elastic cloud platform for Web 
applications based on Docker," 2016 18th International 
Conference on Advanced Communication Technology (ICACT), 
2016, pp. 1-1, doi: 10.1109/ICACT.2016.7423439. 

[41]  S. Nathan, R. Ghosh, T. Mukherjee and K. Narayanan, 
"CoMICon: A Co-Operative Management System for Docker 
Container Images," 2017 IEEE International Conference on 



Smart Computing and Systems Engineering, 2021 
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka 

 

236 

 

 

Cloud Engineering (IC2E), 2017, pp. 116-126, doi: 
10.1109/IC2E.2017.24. 

[42]  W. Kangjin, Y. Yong, L. Ying, L. Hanmei and M. Lin, "FID: A 
Faster Image Distribution System for Docker Platform," 2017 
IEEE 2nd International Workshops on Foundations and 
Applications of Self* Systems (FAS*W), 2017, pp. 191-198, doi: 
10.1109/FAS-W.2017.147. 

[43]  J. Rufino, M. Alam, J. Ferreira, A. Rehman and K. F. Tsang, 
"Orchestration of containerized microservices for IIoT using 
Docker," 2017 IEEE International Conference on Industrial 
Technology (ICIT), 2017, pp. 1532-1536, doi: 
10.1109/ICIT.2017.7915594. 

[44]  D. N. Jha, S. Garg, P. P. Jayaraman, R. Buyya, Z. Li and R. 
Ranjan, "A Holistic Evaluation of Docker Containers for 
Interfering Microservices," 2018 IEEE International Conference 
on Services Computing (SCC), 2018, pp. 33-40, doi: 
10.1109/SCC.2018.00012. 

[45]  X. Wan, X. Guan, T. Wang, G. Bai and B. Choi, "Application 
deployment using Microservice and Docker containers: 
Framework and optimization", Journal of Network and Computer 
Applications, vol. 119, pp. 97-109, 2018. doi: 
10.1016/j.jnca.2018.07.003.




