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Abstract - Vibration analysis is used to detect faults and 

anomalies in machinery and other mechanical systems that 

produce vibrations during operation. The study aimed to 

develop an algorithm that can detect and locate engine faults 

in automobiles by analyzing vibrational data produced during 

engine operation. Analysis was done on one type of engine 

fault – Spark Ignition Engine misfire. To detect anomalies in 

the vibrational pattern (waveform), analysis was carried out 

in both time and frequency domains. To obtain vibrational 

data an AVR – 32 (Arduino) based data acquisition device was 

built, and analysis was carried out in MATLAB using scripts 

and functions. The developed algorithm isolates frequency 

components in the waveform that corresponds to engine faults 

and converts them into numerical quantities that are then 

compared with computed ranges. The algorithm was able to 

identify the presence of a misfire in the engine and could 

locate the cylinder in which the misfire occurs with significant 

accuracy. 
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I. INTRODUCTION 

Vehicle engine faults need to be detected to prevent 
damage to components of the vehicle, maintain driver and 
passenger comfort as well as prevent catastrophic failure 
during its operation. The heart of any automobile is its 
engine. Modern-day engines are complex machines that are 
controlled by computers and rather intimidating for the 
usual mechanic to work on. Engine faults can be 
categorized into faults that can be identified visually, with 
the use of onboard diagnostics (OBD) scanner, and by 
listening to the sound generated by the engine. Faults that 
are identified by listening, requires expert knowledge, and 
experience. It can be difficult for a new and inexperienced 
mechanic to correctly identify a fault by listening to the 
engine sound. Even experienced mechanics can incorrectly 
diagnose faults leading to unnecessary expenses and 
rework. It is therefore imperative that a system is 
introduced which can correctly identify engine faults by 
analyzing engine sound/vibrations. After identifying the 
problem, the mechanic will then have to locate it. This is 
done through trial and error and involves the removal of 
electrical connections and engine components. Therefore, 
having a system that locates the problem is also vital. This 
study aims to develop an algorithm to accurately detect 
engine misfires and locate the cylinder where it occurs by 
analyzing vibrations generated during operation. Vibration 
analysis is widely used to detect failures and faults in 
industrial machinery but is seldom used to detect vehicular 
faults.  

An algorithm is proposed in [1] where engine faults are 
identified using sound recordings. Sound recognition 
techniques are used in the detection algorithm mentioned 
in [2]. The proposed algorithm uses three criteria to decide 
on the fault. A mini microphone is used to record sounds at 
different engine rotational speeds in [3]. Engine faults are 
then identified using a model built in MATLAB. All the 
above-mentioned research is based on sound analysis and 
has a common problem of eliminating excessive noise from 
the recorded sound wave. Further, the effectiveness of 
capturing all vibrations emitted from the engine is 
questionable as the microphone only captures waves that 
reach it through an air medium. Both issues can be 
mitigated if the vibrations are recorded using an 
accelerometer that is placed on a suitable/effective position 
on the vehicle frame/engine. This method is used in [4] to 
acquire vibrations generated from the engine. Using a 3-
axis accelerometer it is possible to measure the vibrations 
in all 3 planes. Variations in signal parameters between the 
normal engine and the fault engines are then identified. A 
3-axis accelerometer is used along with a data acquisition 
device in [5] to acquire vibrations to detect faults in 
induction motors.  

A simple but powerful data acquisition device can be 
fabricated using Arduino as mentioned in [6]. The Arduino 
platform is used to acquire vibrational data from a 3-Axis 
digital accelerometer. However, post-processing of the 
vibrational data must be done on a computer or Field 
Programmable Gate Array (FPGA). Another such Arduino-
based data acquisition device is used in [7] to measure free 
vibrations on a wind turbine blade. A more powerful 
alternative to the Arduino platform is discussed in [8] 
where a Raspberry Pi single-board computer (SBC) is used. 
The main advantage of using an SBC is the ability to 
perform the data acquisition as well as the post-processing 
in the same device. However, SBCs are relatively more 
expensive than microcontrollers and the post-processing 
algorithm can be implemented in an FPGA which has a 
smaller form factor. 

Vibration analysis to determine piston scuffing fault in 
Internal Combustion engines is appraised in [9]. It was 
shown that piston scuffing fault caused an increase in 
maximum, root means square, mean, skewness, kurtosis, 
and impulse factor of the engine vibration in the frequency 
band of 2.4–4.7 kHz [9]. The development of an algorithm 
that can determine faults by assessing nuances between 
normal and abnormal waveforms is presented in [10] where 
analysis is done to determine tool wear and condition in 
high-speed milling. Here reconfigurable infinite impulse 
response (IIR) band-pass digital filter and statistical 
techniques [10] are used for processing and analyzing 
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vibrational signals. The vibrations are analyzed after 
converting the signal into a time-frequency domain with the 
use of Continues Wavelet Transform (CWT). In the 
developed algorithm, arithmetic means value, and the sum 
of absolute values of the digitally filtered vibration signal 
is utilized as reference value to set up a healthy tool 
threshold. A comparison between a set healthy tool 
threshold and the sum of absolute values of the digitally 
filtered vibration signal is the basis for the decision-making 
algorithm. This algorithm can indicate faults in real-time 
which is advantageous. Another real-time fault detection 
algorithm is presented in [11] where vibrational analysis is 
done to identify faults in industrial machinery. Here, Fast 
Fourier Transform (FFT) is used to convert the wave from 
the time-domain to the frequency-domain. The use of CWT 
or FFT greatly depends on the nature of the waveform as 
FFT does not consider time-domain characteristics whereas 
CWT allows the assessment of characteristics that vary 
with time. For example, the effectiveness of both CWT and 
FFT to distinguish abnormalities in EEG signals is assessed 
in [12]. It was found that since EEG signals are non-
stationary (characteristics change with time) CWT is more 
suitable than FFT for spectral analysis. To arrive at a 
conclusive decision, it is therefore imperative to use both 
methods to analyze waveforms and see what is most 
effective in determining engine faults. 

Signal analysis techniques to locate engine faults 
(misfire) are being discussed in [13]. In this study, time-
domain features such as the peak-to-peak value (PP), root 
mean square value (RMS) are used to identify and isolate 
the misfiring cylinder of an engine. Experiments showed 
that as the engine rotational speed is changed, the features 
that can be used to detect and locate the cylinder also 
change. Therefore, the performance of the features in 
isolating faults is dependent on the engine rotational speed. 

Vibration analysis is used in many instances to detect 
anomalies and faults in mechanical systems. Extensive 
research has been done on detecting engine faults through 
vibration analysis. However, locating faults have been only 
discussed in [13]. Here, analysis is performed exclusively 
in the time domain. In this study, waveforms will be 
analyzed in both frequency and time domains. The 
developed algorithm isolates fault signals to detect and 
identify engine faults. 

II. METHODOLOGY 

A. Theory 

A digital 3 -axis accelerometer (ADXL 345) was 
chosen as the sensing device. The data acquisition device 
was made using the Arduino platform. The algorithm for 
analyzing the signal was created in MATLAB using scripts 
and functions. Signal analysis is predominantly done in the 
frequency domain using the Fast Fourier Transform (FFT) 
as the waveforms emitted from the engine are stationary 
signals when considered for a long enough period.  

FFT is an algorithm that calculates the Discrete Fourier 
Transform in a numerically efficient way. The benefit of 
using the FFT algorithm is that it is an order nlog(n) 
operation, where n is the number of discrete data points. 
For large data sets, this is favorable as FFT is almost linear 
scaling in n as the effect of log(n) is less significant as n 
gets large. The FFT algorithm is standard and comes as a 
built-in feature in MATLAB.  

At the early stages of the research, waveforms were 
analyzed using a Spectrogram that utilizes a Gabor 
transform. Spectrograms can be used to assess a waveform 
in both time and frequency domains. For example, when a 
signal is transformed from the time domain to the 
frequency domain using the FFT it would yield a plot that 
shows the constituent frequencies of that waveform and 
their magnitudes. However, it is not possible to observe 
when these frequency components occur in the waveform. 
The Gabor transform allows us to compute the spectrogram 
which is a time-frequency plot that shows which 
frequencies are active in each period of a waveform. The 
Spectrogram is computed by convolving a Gaussian 
wavelet with the Fourier transform while the Gaussian 
window is moved across the original waveform. This yields 
a frequency plot weighted by the Gaussian window.  

B. Experimentation 

A normal running engine produces vibrations due to 
the combustion that occurs in the cylinder and other 
moving parts in the engine. The constituent frequencies of 
this vibrational signal will be constant at a particular 
rotational speed of the engine. If a misfire is induced in one 
of the cylinders, the vibrational signal will change 
significantly due to the unbalanced combustions in the 
cylinder. Additional frequency components will be 
observed in the signal and thus the issue could be identified. 
Further, the magnitude of these newly induced frequencies 
and their distribution will be assessed to find a correlation 
between waveform characteristics and the misfiring 
cylinder. If successful, the misfiring cylinder can be 
located. The vibrations were captured using a 3 – Axis 
digital accelerometer (ADXL345) and acquired by a Data 
Acquisition Device (built using the Arduino platform) 
through I2C communication protocol. The received data is 
then transmitted via Serial communication (UART) to a 
computer. The Arduino board is interfaced with MATLAB 
which is installed in the computer. The received data is then 
written to a spreadsheet by a MATLAB script. This data 
contains the acceleration values in the X, Y, and Z axes and 
the time stamps at which readings were taken. The 
sampling rate ranges from 450 Hz to 500 Hz which was 
deemed satisfactory as it would give a maximum 
measurable frequency of 225 Hz (In a 4 stroke 4-cylinder 
engine at 2000 RPM, combustion occurs at a frequency of 
66.67 Hz). The recorded data can then be loaded to the 
MATLAB environment for further analysis. 

1) Experiment 01 

A series of preliminary tests were carried out to check 
the feasibility of the research and to develop the algorithm. 
The objectives of the experiment are as follows, 

● Determine whether the waveform produced is 
stationary. 

● Observe whether misfires can be detected through 
waveform analysis.  

The experiment was carried out on a 2002 Toyota 
Corolla 1.5L 4 stroke 4-cylinder engine (1NZ-FE) using 
just one accelerometer positioned between the left-most (1st 
cylinder) and the 2nd cylinder. The accelerometer was fixed 
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to the engine block rigidly with the use of a stud and bolt 
connection. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Test setup for experiment 01 

A misfire was induced in the first cylinder by 
disconnecting the electrical connection to its ignition coil. 
Readings were then taken at idling speed and at 2000 RPM. 
The procedure was repeated for misfires in each cylinder 
and finally for the normal (no misfire) scenario. 

 

 

 

 

 

 

 

 

 

 

Fig 2: Accelerometer fixed rigidly to the engine block. 

The obtained waveforms were then analyzed using a 
preliminary algorithm that was coded in MATLAB. 

2) Experiment 02 

The second set of experiments were carried out on the 
same engine at idle speed (around 1000 rev/min). Readings 
were taken from two accelerometers at two different 
locations to see if and how the waveforms change with the 
location of the accelerometer.  

Objectives of the experiment are as follows, 

● To see if the magnitudes of the additional 
frequencies (explained in future sections) have 
any correlation with the position of the misfiring 
cylinder. 

● To assess the reproducibility of the vibrational 
waveforms. 

 

Fig 3: Test setup for experiment 02 

As in the 1st experiment, readings were taken for 5 
scenarios (normal, misfires in cylinders 1,2,3, or 4). 
Readings were taken by both accelerometers 
simultaneously. In this experiment, only the Y-axis 
readings were taken from both accelerometers because 
upon analyzing data obtained in the 1st experiment it was 
clear that significant differences in the waveforms in 
different scenarios were observed only in the Y-axis 
readings. The procedure was repeated trice. 

Measurements were obtained from two locations to see 
if the results could be used to locate the misfiring cylinder. 

 

 

 

 

 

 

 

 

 

 

 

Fig 4: Updated data acquisition device with 2 accelerometers 

C. Results 

1) Experiment 01 

A total of 30 waveforms were obtained in the first 
experiment. The breakdown of those waveforms are as 
shown in Tbale I. To demonstrate the differences in the 
obtained waveforms Fig 5 to Fig. 9 are presented.  
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TABLE I. RESULTS BREAKDOWN 

Scenario X 

axis 

Y 

axis 

Z 

axis 

Total 

Idle 

Normal 1 1 1 3 

1st cylinder misfire 1 1 1 3 

2nd cylinder misfire 1 1 1 3 

3rd cylinder misfire 1 1 1 3 

4th cylinder misfire 1 1 1 3 

2000 RPM 

Normal 1 1 1 3 

1st cylinder misfire 1 1 1 3 

2nd cylinder misfire 1 1 1 3 

3rd cylinder misfire 1 1 1 3 

4th cylinder misfire 1 1 1 3 

Total 10 10 10 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) Experiment 02 

 

Fig 10: Power spectral density vs Frequency of different engine 

conditions. 

The 3D plot shown in Fig 10 contains the frequency 
spectrum of all the waveforms obtained by both 
accelerometers. Note that for each scenario and 
accelerometer, 3 frequency distributions are plotted. This is 
because measurements were repeated 3 times for each 
scenario. 

 

Fig 5: Y-Axis Readings - Normal at Idle 

Fig 6: Y-Axis Readings - 1st Cylinder misfire at Idle 

Fig 7: Y-Axis Readings - Normal at 2000 RPM 

Fig 8: Y-Axis Readings – 2nd Cylinder misfire at 2000 RPM 

Fig 9: X-Axis Readings – 3rd Cylinder misfire at 2000 RPM 



Smart Computing and Systems Engineering, 2021 
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka 

 

241 

 

 

D. Analysis and Discussion 

1) Experiment 01 

Fig 5 to Fig. 9 shows the denoised waveform in the 
time domain, frequency spectrum, and spectrogram of 
some of the waveforms. To validate that the signals 
received are stationery, the waveforms were analyzed in the 
time- frequency domain using a spectrogram (Gabor 
Transform). 

The horizontal line in the spectrogram indicates that 
the signal does not change with time, thus is stationary. 
After converting the signal to the frequency domain using 
the FFT, the noise was removed by eliminating low power 
frequency components. In all waveforms, a clear spike was 
observed in the frequency spectrum at a frequency similar 
to that of the frequency of combustion (spark frequency) at 
that particular engine speed. For instance, in Fig 7,8 and 9 
a spike is present at around 68-69 Hz which is the frequency 
of combustion at 2000 RPM. At normal conditions (no 
misfire), the only frequency component that was present in 
the waveform corresponds to the spark frequency. This was 
later validated through multiple tests.  

When a misfire is induced in one of the 4 cylinders, 
extra frequency components appear. As shown in Fig 8, 
when a misfire is induced in the 2nd cylinder an additional 
spike appears at 17.63 Hz. This new frequency component 
was observed in all misfiring scenarios in the Y-Axis at 
2000 RPM. At idle speed, additional frequency 
components were only visible in some misfire scenarios. 
Further in all scenarios where this frequency appeared, it 
was similar to the combustion frequency of a single 
cylinder (single-cylinder spark frequency). For instance, at 
2000 RPM, a cylinder experiences a spark every 2 rotations 
of the crankshaft, thus at a frequency of 16.67 Hz. The 
presence of this additional frequency component could 
therefore be considered as an indicator for a misfire. 
However, locating the cylinder is not possible through this 
analysis.  

2) Experiment 02 

As the waveforms were validated to be stationary 
signals from experiment 01, analysis was performed 
exclusively in the frequency domain. Four key regions 
were identified where frequency components would 
appear. These regions are,  

a) Single cylinder spark frequency region  
b) Engine crank rotational frequency region 
c) Intermediate frequency region 
d) Engine spark frequency region 

The frequency distributions of the obtained waveforms 
are shown in the 3D plot (Fig 10). Frequency spikes were 
observed in the spark frequency region as observed in 
Experiment 01. Whenever there was a misfire, additional 
spikes were observed in the Single spark frequency region, 
Engine crank rotational frequency (Crank frequency) 
region, and intermediate frequency region. From these 
three regions, the crank frequency region showed the most 
variance in power of the frequency components. Therefore, 
the single spark frequencies of each waveform were 
isolated using a MATLAB script for further analysis.  

Fig 11 shows the average power values (with 
associated uncertainties) of the crank frequencies in each 

scenario. The two points in each region show the means of 
the power values obtained from the left accelerometer and 
right accelerometer, respectively. From Fig.11 it is possible 
to distinguish the normal running condition, 1st cylinder 
misfire and 2nd cylinder misfire as their power ranges do 
not overlap with others. However, it is difficult to 
distinguish the 3rd cylinder misfire case from the 4th 
cylinder misfire case by only assessing the mean power 
values as their power ranges overlap. Therefore, a different 
approach had to be taken for the analysis. The graph in Fig 
12 shows the means of RMS values of the vibrational 
signals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 11: Mean Power vs misfire scenario 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 12: Mean RMS values vs misfire scenario 

 
The green and orange points show the mean RMS of 

the original waveforms (without processing) of different 
misfire scenarios. The red and blue points are the mean 
RMS values of the same waveforms where all other 
frequency components except the crank frequency are 
filtered out (only the crank frequency component exists). 
The mean power variation also shows the same pattern.  
However, RMS was selected over PSD as it required less 
computation. As expected under normal conditions the 
RMS values of the isolated signals (filtered signals) are 
zero as the single spark frequency does not exist in the 
original waveform. In other cases, the RMS values are non-
zero for the isolated signals. The mean RMS values show a 
similar trend to the mean power values shown in Fig 11. 
Similarly, normal, 1st cylinder misfire, 2nd cylinder misfire 
can be differentiated by just observing the RMS range of 
the isolated waveforms (-1.5σ and 1.5σ). To differentiate 
the 3rd and 4th cylinder misfiring cases from each other the 
RMS ranges of their respective original signals must be 
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used. Specifically, the signal obtained from the right 
accelerometer. There is a clear difference between the 
mean RMS values of the original right accelerometer 
signals of the 3rd and 4th cylinder misfiring scenarios. 
Further, the ranges were chosen to avoid their RMS ranges 
from overlapping while yielding an acceptable level of 
accuracy (87%). Under these conditions, the misfiring 
engine can be located by the following methodology shown 
in Table III. 

TABLE II.  MEAN RMS VALUS AND RANGE OF RMS VALUES 

 
TABLE III.  IDENTIFICATION ARGUMENTS 

 

Isolated 
Signal 
RMS 

 
Original 

Signal RMS 

Normal 0   

1st Cylinder misfire 
(1.4739 - 
1.8823) 

  

2nd Cylinder misfire 
(0.8618 - 
1.0884) 

  

3rd Cylinder misfire 
(0.4470 - 
0.6468) 

AND 
(3.2727 - 
3.5097) 

4th Cylinder misfire 
(0.4270 - 
0.6364) 

AND 
(3.5886 - 
3.8326) 

 

Since only the waveforms that were obtained by the 
right accelerometer were used for the identification there is 
no need for a system with two accelerometers for data 
acquisition for this engine model and this engine fault. 

III. CONCLUSION  

Vibrations transmitted through the vehicle structure 
were recorded using an accelerometer connected to a data 
acquisition device. A low-cost data acquisition device was 
built using the Arduino platform. The recorded waveforms 
which originated from the same engine but under normal 
and misfiring conditions were analyzed. The analysis was 
done on MATLAB. Two separate experiments were carried 
out to obtain data to develop a method to detect engine 
misfires and to locate the misfiring cylinder. Frequency 
analysis showed that frequency components equal to the 
crank frequency of the engine at idling speed appear when 
there is a misfire in one of the cylinders. The average power 
of the crank frequency components can be used to 
differentiate normal; 1st cylinder misfire and 2nd cylinder 
misfire scenarios. To distinguish misfires in the 3rd and 4th 
cylinders assessing the power of the frequency components 
proved insufficient. Differentiation was possible by a 
combined assessment of the mean RMS values of the 
isolated fault signals and the original signals.  

This method can be used to detect and locate an engine 
misfire (with about 87% accuracy) in this engine at idle 
speed.  

This study was performed on one engine model 
preliminarily. The methodology can be developed, 
however, to detect misfires in other engine models through 
conducting the same tests on those engines and setting 
identification arguments unique to them. Currently, the 
methodology can only detect engine misfires under 
controlled conditions. That is, on an engine that does not 
have other faults except for misfires. This study does not 
assess how the existence of other faults such as damaged 
camshaft, knocking, faulty mounts, etc. in addition to 
engine misfiring, affect the performance of the 
methodology. In the future, the methodology may be 
developed to detect and locate other engine faults such as 
engine knocking.  

Based on the conducted study, an algorithm can be 
developed and implemented on a device that can be used to 
detect and locate engine faults. Such a device will assist 
mechanics in accurately detecting and locating engine 
faults without unnecessary engine disassembly and trial 
and error techniques. Further, an algorithm based on this 
methodology may be implemented on the Engine Control 
Unit to detect faults and improve efficiency. For instance, 
engine efficiency can be improved by controlling the spark 
timing of individual cylinders once engine knocking is 
identified and located. 
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