

28

Proceedings of the 2nd South Asia Conference on Multidisciplinary Research 2019 Vol. 2

Copyright © TIRDI / ISSN: 2659 – 2010 online

ENTERPRISE READY CONTAINERIZED AND MICROSERVICES

ARCHITECTURAL DEVOPS ENGINE DESIGNING

W.M.C.J.T. Kithulwatta1, D. Jayawickrama2

1Software Engineering Teaching Unit, Faculty of Science, University of Kelaniya, Dalugama,

Kelaniya, Sri Lanka
2mvv Information Technology, Level 9, East Tower, World Trade Center, Echelon Square,

Colombo 01, Sri Lanka

ABSTRACT Seamlessly software delivery and maintaining without any delay, is the major task of DevOps

engineers in industrialization. In the traditional way, it is using bare metal hardware or cloud services to farm

the computer system infrastructure. While using those modules, the main problems arising are, huge cloud

service charges, disability to use infrastructure in the cross-platform, difficulty of infrastructure migration,

system archiving problem, data persisting problems and smooth scalability issue. Main objectives of the

research study are to create portable system infrastructure modules, to create technical and theoretical

containerized DevOps engine, apply long-time data persisting approach to the enterprise applications and to

apply high-velocity innovation to the computer systems infrastructure. The proposed DevOps engine was

designed with the Docker container management system on top of the Linux operating system as the host. It was

used Docker trusted images to deploy, isolated containers by using microservices architecture with advanced

software engineering concepts with industrialized software applications. It was used enterprise-ready software

applications and services on the proposed engine to validate the concept over the same configurations on the

cloud service. With the usage of encapsulated components container approach, all internal data was secured on

top of the host operating system. Due to the portability of Docker containers, it was easy to migrate the

monolithic computer system to microservices architecture. By using fast Docker containers, it was facilitated to

DevOps engineers on the engine to improve the scalability and security across the system infrastructure.

Keywords: DevOps, Microservices, Containerization, Docker, Distributed computing

1. Introduction

By reducing more complex computer system

infrastructure, organizing the DevOps platform is

one of the major tasks of DevOps engineers in the

industrial approach. Involving with more advanced

and high-velocity software application delivery

mechanism is causing to increase the customer/

end-user satisfaction regarding the company.

Usually, in-house bare metal hardware or cloud

services use to design the DevOps platform for the

production-ready environment. In the DevOps

platforms, DevOps engineers had to face several

problems and issues: huge cloud service charges,

disability to use infrastructure in the cross-

platform, difficulty of infrastructure migration,

system archiving problem, data persisting problems

and smooth scalability issue. To create portable

system infrastructure modules, to create technical

and theoretical containerized DevOps engine, to

apply long-time data persisting approach to the

enterprise applications and to apply high-velocity

innovation to the computer systems infrastructure:

are the research objectives of this research study.

As mentioned in the [13], a software application or

services reusability is a major preliminary of

software system evolution. Since it is also

applicable inside the DevOps environment to

reduce the process and effort of the DevOps

activities. According to the authors of [13], in the

DevOps platform can reuse data, architecture,

design and program under both concepts of for-

reuse and with-reuse. Furthermore, reliability and

maintainability can be enhanced in the DevOps

platform with reusability. The authors of the [21]

has mentioned that containers are very lightweight

than virtual machines (VM). The same paper was

presented that containers has consisted of

fundamentally necessary software dependencies

which needed to run by allocating all resources on

top of a Linux kernel.

Omitting traditional and monolithic architectural

software applications, microservices software

applications has conceived in the industry.

Microservices software applications were benefited

to the enterprise community by providing major

four characteristics [9]. Those benefits:

organization around business capability, automated

deployment, intelligence in the endpoints and

decentralized languages and data. With the

29

Proceedings of the 2nd South Asia Conference on Multidisciplinary Research 2019 Vol. 2

Copyright © TIRDI / ISSN: 2659 – 2010 online

collaboration of those, microservices was provided

with an easier platform to design, develop, test and

release the services with great agility capacity.

Furthermore, in the paper [9] has presented that

microservices architecture was presented

decentralized government and independent data

management service. Microservices architecture

has helped to omit the standardized for one single

technology. Changing the technology for an

application was very difficult on the monolithic

architecture. The author of [12] has presented that

the approach of microservices architecture was

more suitable for the development tests and

deployments.

Docker is a modern technology which was built for

high-velocity innovations to deliver to the end-

users. With enhancing developer productivity,

deployment velocity, operational efficiency,

infrastructure reduction and faster issue resolution

[5]. According to the official website for the

Docker [7] has presented that Docker volumes are

the most preferred way to persist data in Docker

containers and services. On the host operating

system (OS), data has archived the particular data

directory in the path of

/val/lib/docker/volume_name/_data/. As presented

in the paper [9], the authors say that Docker is a

good approach for microservices applications.

In term of distributed computing, it uses physically

separated multiple computers by linking together

via a network to accomplish a particular goal [19].

According to the [17], the authors have presented

that the engagement of the container technology

and Docker are making a profound impact on the

distributed systems and cloud systems. Containers

and microservices are a greater pair in the

distributed computing systems.

2. Methods and materials

To design the enterprise-ready DevOps engine, a

large enterprise-ready software application was

used for experimental purposes. The software

applications were developed using loosely coupled

components/services by integrating microservices

architecture. In the application, its own database

(DB) were used for each service instead of sharing

one DB with all services to get the benefit from the

microservices. The software application was

developed with AngualrJS for frontend application,

Java-based spring-boot framework technology for

the backend components and MySQL for DB

services. Jenkins and Jfrog artifactory were used

as services for deployments in DevOps activities.

For the easiness and commonly used in industry,

those software and services were selected. Using

three different scenarios with the equal host OS

resources, the research study was conducted. Case

01 is the proposed engine.

Case 01: To design the proposed DevOps engine,

Docker container management platform was

launched on top of a Linux x86_64 Ubuntu 18.04.2

LTS OS. Eight separate Docker containers were

used by mounting Docker volumes for each

container to archive key data directories [5]. On

one host OS, distributed containers were launched.

Figure 1 presents the architecture for the

application and DB containers for the proposed

DevOps engine.

To launch each container, Docker trusted images

were used from the local Docker registry and

Docker Hub: Ubuntu bionic containers for back-

end services, Apache HTTPD container for front-

end service, MySQL container for DBs, Jenkins

container and Jfrog Artifactory container.

Figure 1: The basic architecture for the proposed engine

Figure 2 has shown that the artifacts delivery and

sharing procedure within the containers from the

Jenkins to application containers. Theoretically and

according to the proposed methodology, the

artifacts were delivered from the Jenkins volume to

application container volumes.

For the data communication among the containers

and link containers together, an internal Docker

network was established in the local Docker engine

with subnet 192.168.0.0/16 and the gateway as

192.168.0.1 instead of default Docker network. To

open the containers to the outside world, containers

were mapped with a host port. For the internal

communication, containers were mapped with

container ports. In the following Table1 presents

the internet protocols (IP) and port mapping for

each container.

30

Proceedings of the 2nd South Asia Conference on Multidisciplinary Research 2019 Vol. 2

Copyright © TIRDI / ISSN: 2659 – 2010 online

Figure 2: Artifacts delivery mechanism

Container Internal IP Host port
Container

port

MySQL

container 1
192.168.0.1 13306 3306

MySQL

container 1
192.168.0.2 23306 3306

Back-end

service

container 1

192.168.0.3 - 28088

Back-end

service

container 2

192.168.0.4 - 18088

Front-end

service

container

192.168.0.5 8000 80

Jenkins

container
192.168.0.6 8090 8080

Artifactory

container
192.168.0.7 8082

8081

Portainer

container
192.168.0.8 9000 9000

Table 1: IPs and port mapping for the proposed engine

To access each service from the outside world,

"host IP:host-port" was needed to use. To access

the service within the Docker environment,

"internal IP: container-port" was used. Portainer

container was used to govern the Docker platform.

After created a stable Docker platform, all

containers were archived as images in local Docker

environment.

To evaluate the proposed engine, two

corresponding cases were used as discussed below.

For all cases: same software applications, DBs and

other supporting services were used excepting the

deployed platform and architecture of

infrastructure.

Case 02: The platform was designed with three

cloud instances according to the traditional

distributed computing approach in the DevOps

practices. In the traditional approach does not

launch more separated instances for each service

due to the large payments of the cloud service and

to optimize the computer resource utilization.

Payment optimization was a key task of DevOps

engineers in the traditional approach.

Instance 1: continuous delivery and artifactory

storing (as miscellaneous services: Jenkins & Jfrog

artifactory)

Instance 2: all microservices software applications

Instance 3: DB services

The second instance was launched to deploy

microservices software applications in separate

directories. Instance 3 was facilitated with DB

service to each component by keeping two

databases. Artifacts delivery mechanism was the

same in the Case 01 but in here, both Jenkins and

artifactory services were launched in one instance.

Figure 3: Used architecture for Case 02

Case 03: The platform was designed with seven

separated cloud instances with the same

configuration of Case 01 as distributed manner.

Only differentiate is the deployed platform and no

used third-party platform monitoring tool: in Case

01, the governing tool was the portainer tool as a

container.

In both Case 02 & 03, for the network creation and

monitoring the infrastructure, cloud service

providers’ facilities were used. To archive data of

instances, cloud storages were used with payments.

To evaluate the proposed DevOps engine, all

containers and cloud instances were archived in all

cases. For the performance evaluation of the

Docker platform, results of docker stats command

and portainer tool was used. To evaluate the cloud

machines in all cases, the default machine

monitoring facility was used.

3. Results & discussion

For the evaluation of the proposed engine, the

performances of the engine were evaluated by

considering basic Docker container metrics as

31

Proceedings of the 2nd South Asia Conference on Multidisciplinary Research 2019 Vol. 2

Copyright © TIRDI / ISSN: 2659 – 2010 online

shown in Table 2., below. For the ease of

presentation results, the following abbreviations

were used for Docker containers namely CPU %

and MEM % (the percentage of the host’s CPU and

memory the container is using), MEM USAGE

/LIMIT (the total memory the container is using,

and the total amount of memory it is allowed to

use), NET I/O (the amount of data the container

has sent and received over its network interface),

BLOCK I/O (the amount of data the container has

read to and written from block devices on the host)

and PIDs (the number of processes or threads the

container has created)[6].

By collecting the mean values for each metrics by

using docker stats command on the host OS, the

above Table 2, was created. According to Table 2,

each container was executed using a minimum

number of hardware and software resources while

executing a large number of processes inside the

containers. Sometimes, containers were presented

more than 100% CPU usage since docker stats

command presents the CPU usage as a percentage

of a single CPU. Host OS for the proposed engine

was a multi-core OS and it was parallelized the all

the processes with many cores to get the benefit of

the containerized approach. Within the Docker

container approach, some containers were used

extra resources of other containers to be scaled

when the container was needed more hardware

resources.

Furthermore, the proposed DevOps engine was

evaluated against previously discussed Case 02 &

Case 03. By considering host OSs performances for

all 03 cases, Table 3 was created. To generate the

experimental results, the mean values for each

metrics were calculated by considering 30 days of

performance with a one-hour interval per day.

Particular metrics are CPU utilization [Activity

level from CPU. Expressed as a percentage of total

time (busy and idle) versus idle time.], memory

utilization (Space currently in use. Measured by

pages. Expressed as a percentage of used pages

versus unused pages), disk read I/O (Activity level

from I/O reads. Expressed as reads per second.),

disk write I/O (Activity level from I/O writes.

Expressed as writes per second.), disk read bytes

(Read throughput. Expressed as bytes read per

second.), disk write bytes (Write throughput.

Expressed as bytes written per second), network

receive bytes (Network receipt throughput.

Expressed as bytes received per second.) and

network transmit bytes (Network transmission

throughput. Expressed as bytes transmitted per

second.).

According to Table 03, in Case 01, the CPU

utilization and memory utilization of Docker

installed host computer instance was higher than all

other instances in Case 02 & 03. But in Case 02

was performed more CPU and memory utilization

against the Case 03. It depicts that, the host OS of

Docker engine (in Case 01) uses the CPU and

memory resources more efficiently and effectively

than other cases by sharing all processors of

Docker containers on the host OS. Due to Case 01

host, OS was executed more containers and

processors than others. Without wasting the host

OS resources in Case 01, it was utilized the host

OS highly the Docker platform.

As mentioned in below Table 3, the Case 01 was

consumed higher disk read I/O, disk write I/O, disk

read bytes, disk write bytes, network receive bytes

and network transmit bytes than others. Reason is:

host instance was performed more containers with

more workload. To perform high fast execution for

the Docker engine, the host was needed to consume

higher resources usage in Case 01 than other cases.

By giving an isolated environment to the

microservices software applications, the Docker

platform was presented most suitable nature than

separated cloud instances.

To transfer the files between distributed Docker

containers, volumes were used since all key

data/files were attached to Docker volumes. Linux

cp command was used to send artifacts at each

software version deployments to each application

containers from the Jenkins container in Case 01.

Due to, data artifacts transferring was happened

between volumes on the host OS. At both Case 02

& 03, to send build artifacts from the Jenkins to

each application instance (among distributed

nodes), Linux scp command was used. The due

reason was for that is the artifacts sending

happened between two computers. In Linux scp

command approach, credentials of the instances

were needed to share with other instances:

username-password or SSH key files of the

instances. In Case 01 the data was shared without

opening to the outside world. But in Case 02 & 03,

the data could be opened to the outside world.

32

Proceedings of the 2nd South Asia Conference on Multidisciplinary Research 2019 Vol. 2

Copyright © TIRDI / ISSN: 2659 – 2010 online

Container
name

Container ID CPU %
Memory

usage/ Limit
MEM% Net I/O Block I/O PIDs

Container for
front-end

8aa9962bbc45 0.54
209.8MiB /
14.68BiB

1.4
329MB /
3.77MB

1.94MB / 1.36MB 89

Container for
Back-end1

aef156e5eb1c 1.4
744MiB /
14.68GiB

4.95
226MB /
2.01MB

16.6MB / 1.5GB 38

Container for
Back-end2

705a0f4d7d97 1.29
807.6MiB /
14.68GiB

5.37
969kB /
2.64MB

165MB / 173MB 103

Container for
MySQL1

9b2296637611 2.45
1.64BiB /
14.68GiB

11.17
17.7MB /

176kB
46.7MB / 14.9MB 148

Container for
MySQL2

fed771dda68a 3.07
806.9MiB /
14.68GiB

5.37
20.4MB /
6.43MB

14.2MB / 227MB 134

Container for

Jenkins
b4d6ba6100c3 2.84

2.035GiB /

14.68GiB
13.86

1.09GB /

2.28GB
4.71GB / 1.55GB 51

Container for
Artifactory

4b23863a0758 0.65
1.308GiB /
14.68GiB

8.9
742MB /
3.08GB

1.17GB / 12.7GB 74

Container for

Portainer.io

tool

a93c20a25dbb 0.14
15.23MiB /
14.68GiB

0.1
22.8MB /
175MB

17.74 MB /
2.44GB

11

Table 2: Docker container resource usage

Cases

Cloud

Instance

Name

CPU

utilization

(%)

Memory

utilization

(%)

Disk

Read IO

Disk

Write IO

Disk

Read

Bytes

Disk

Write

Bytes

Network

Receive

Bytes

Network

Transmit

Bytes

Case01
Docker Host

instance
14.106 54.5 1.169M 16.907M 26.761G 291.307G 32.014G 39.165G

Case02
Application

Instance
0.486 17.453 45.03K 1.158M 573.13M 16.683G 4.457G 3.671G

 DB Instance 0.427 14.181 96.353K 4.594M 829.335M 48.257G 74.330G 76.033G

Miscellaneous

Instance
0.71 6.646 87.436K 1.215M 1.226G 15.978G 20.544G 6.743G

Case03
Instance for

Front end
0.129 3.356 30.489K 388.233K 266.042M 449.011M 958.294M 1.377G

Instance for

Backend 1
0.229 4.119 34.229K 229.762K 472.329M 603.873M 1.420G 1.383G

Instance for

Backend2
0.307 4.015 35.157K 303.117K 389.566M 785.418M 1.257G 1.567G

Instance for

MySQL01
0.291 6.115 41.121K 442.221K 498.338M 788.356M 1.56G 1.884G

Instance for

MySQL02
0.274 5.475 38.416K 376.556K 406.881M 677.854M 1.48G 1.854G

Instance for

Jenkins
0.266 3.066 31.844K 406.889K 376.674M 686.312M 1.69G 1.669G

Instance for

Atifactory
0.197 3.688 28.574K 364.637K 501.984M 853.112M 1.72G 1.828G

Table 3: Host computer resource usage and utilization

33

Proceedings of the 2nd South Asia Conference on Multidisciplinary Research 2019 Vol. 2

Copyright © TIRDI / ISSN: 2659 – 2010 online

Without sharing public IPs, data transmission was

happened with using internal IPs of containers or

instances in all three cases. Hence among three

approaches, the approach of Case 01 is more secure

than others since all data transmission is happening

inside the host OS.

After launched the Docker engine on top of the

host OS, the portainer tool was launched on the

Docker engine as a container. The tool was

facilitated to manage all activities of the Docker

platform with a web-based graphical user interface

without using the command-line interface of the

host OS. As shown in Table 2, portainer tool was

consumed very low resources from the host OS.

Hence it does not have any effect on other

containers regarding the host computer resources.

Due to the usage of Docker templates for

containers (e.g.: MySQL template of Docker,

Jenkins templates of Docker and etc.) in local

Docker registry (inside the host OS) and Docker

Hub (open community), software reusability was

applied to create the engine as an advanced

software engineering practice to the DevOps

platform. Due to those templates are already

configured with all packages which are needed to

launch the container without installing manually.

Particular containers were launched immediately as

an easy function in the DevOps platform. Since the

software reusability is one of major preliminaries

of the software evolution in the software

engineering domain. With the engagement of the

reusability components in the proposed DevOps

engine, the infrastructure designing and

development were with both with reuse and for

reuse. Due to the mounted data volumes could

attach to another container, data reuse was applied.

After migrated the platform, the new platform

could implement with the same configuration in the

new platform. Hence architectural reuse and

design reuse was applied. After migrated the

DevOps engine any containers did not lose any

executable code or processing tool. Therefore,

program reuse was applied to the proposed

DevOps engine.

If a container was destroyed or crashed, a new

container was able to launch by attaching originally

attached Docker volume. The reason was, all

mounted data on the Docker volumes were

protected on the host OS, without destroying even

the container was destroyed. If there were more

data in different directories, attaching more

volumes was possible without attaching all

directories to one volume to protect the data

without any crash. If the host OS of Docker was

crashed or volumes were destroyed directly, the

mounted volumes were lost with data.

After created a stable platform on the Docker, all

containers were archived as images, on the local

Docker registry. Corresponding cloud instances

were also able to archive as images/snapshots in

both Case 02 & 03. They were able to use as base

templates to create another container/instance on

the platform, the image creation was used as

container/instance backups on the platform. To

extend the backup process furthermore, the

containers were converted to .tar format. The

converted format was able to migrate from the

local Docker engine to the host OS. The converted

format was able to migrate from the host OS to any

another computer (any OS platform) easily as

portable modules. After migrated the containers

were able to launch on a new platform without

losing any data with the same configurations. But

archived instances were not able to convert any

format or migrate from the platform to another one.

It depicts that the proposed DevOps engine

presents more backup options. The engine has easy

& fast migration capabilities with portable

modules.

With the applied theoretical concepts for the

proposed DevOps engine, a technically feasible

DevOps engine was able to develop and deploy.

The engine was exhibited environmental

independency due to the engine was able to deploy

and migrate on any OS platform with more

lightweight and portable modules. Since all those

portable modules were able to migrate from the

platform to another, without touching to basic

configurations, both low coupling and high

cohesion were embedded. Due to excepting large

and complex configurations, easy understandability

was with the proposed DevOps engine. According

to the long-time data persistence of the proposed

engine, the reliability of the engine was increased.

For the DevOps engineer’s perspective, by

architecting a DevOps engine for enterprise-ready

microservices software applications most kinds of

advantages were received. Since the easiness of the

used tools to govern the architecture, the

productivity was increased and the development of

the architecture was accelerated. By investing less

maintenance effort and time, the maintainability

was improved. Since the more backup procedures

of the proposed engine, process risk was reduced

and reliability was increased by following more

standards of the DevOps domain.

4. Conclusion & recommendations

As discussed above with the evidence, Docker

containerized approach is an alternative for

VMs/cloud instances with better performances. To

get the benefit of the enterprise-ready

microservices software applications, the distributed

34

Proceedings of the 2nd South Asia Conference on Multidisciplinary Research 2019 Vol. 2

Copyright © TIRDI / ISSN: 2659 – 2010 online

containerized engine provides the most suitable

environment rather than cloud instances due to

containers are with more virtualization benefits.

Containers are with easy and automated scaling

capability without touching to basic configurations

of the infrastructure. To implement a high-velocity

innovative DevOps engine with enterprise-ready

microservices applications, Docker container

approach is more benefited.

After created stable Docker containerized DevOps

engine, the author recommends to archive the

containers as Docker images and .tar format. Those

archived .tar format can use to extend the backup

process of the engine and migrate the engine from

the host platform to another platform (to any OS

platform). For the long-time data persistence of the

engine, one or more Docker volume attaching is

recommended before launching a container.

Without using the traditional command-line

interface, usage of a Docker monitoring tool is

recommended (e.g.: portainer.io tool).

Acknowledgement

I thank Mr. D. Jayawickrama for the great the

supervision for the research work and lecturer Mr.

Wiraj Udara Wickramaarachchi for comments that

greatly improved the manuscript.

References

 [1] Anish Babu, S., Hareesh, M., Martin, J.,

Cherian, S. and Sastri, Y. (2014). System

Performance Evaluation of Para Virtualization,

Container Virtualization, and Full Virtualization

Using Xen, OpenVZ, and XenServer. In: 2014

Fourth International Conference on Advances in

Computing and Communications. [Online] IEEE.

Available at:

https://doi.org/10.1109/ICACC.2014.66 [Accessed

22 Oct. 2019].

 [2] Di Francesco, P., Malavolta, I. and Lago, P.

(2017). Research on Architecting Microservices:

Trends, Focus, and Potential for Industrial

Adoption. In: 2017 IEEE International Conference

on Software Architecture (ICSA). [Online] IEEE.

Available at: https://doi.org/10.1109/ICSA.2017.24

[Accessed 22 Oct. 2019].

 [3] Digitalocean (2018) How to install and Use

Docker on Ubuntu 18.04, Available at:

https://www.digitalocean.com/ community

/tutorials/ how-to-install-and-use-docker-on-

ubuntu18-04

[4] D. N. Jha, S. Garg, P. P. Jayaraman, R. Buyya,

G. Morgan, R. Ranjan, "A study on the evaluation

of hpc microservices in containerized environment

Concurrency and Computation", Practice and

Experience, pp. 1-18, 2019.

[5] Docker (2019) Enterprise Application

Container Platform | Docker, Available at

https://www.docker.com/

[6] Docker Documentation. (2019). docker stats.

[Online] Available at:

https://docs.docker.com/engine/reference/command

line/stats/ [Accessed 24 Oct. 2019].

[7] Docker Documentation. (2019). Manage data in

Docker. [Online] Available at:

https://docs.docker.com/storage/

[8] Felter, W., Ferreira, A., Rajamony, R. and

Rubio, J. (2015). An updated performance

comparison of virtual machines and Linux

containers. In: 2015 IEEE International Symposium

on Performance Analysis of Systems and Software

(ISPASS). [Online] IEEE. Available at:

https://doi.org/10.1109/ISPASS.2015.7095802

[Accessed 22 Oct. 2019].

[9] Francesco, P., Malavolta, I. and Lago, P.

(2017). Research on Architecting Microservices:

Trends, Focus, and Potential for Industrial

Adoption. In: 2017 IEEE International Conference

on Software Architecture (ICSA). [Online] IEEE.

Available at: https://doi.org/10.1109/ICSA.2017.24

[Accessed 22 Oct. 2019].

[10] Jha, D., Garg, S., Jayaraman, P., Buyya, R.,

Li, Z. and Ranjan, R. (2018). A Holistic Evaluation

of Docker Containers for Interfering Microservices.

In: 2018 IEEE International Conference on

Services Computing (SCC). [Online] IEEE.

Available at:

https://doi.org/10.1109/SCC.2018.00012 [Accessed

22 Oct. 2019].

[11] Joy, A. (2015). Performance comparison

between Linux containers and virtual machines. In:

2015 International Conference on Advances in

Computer Engineering and Applications. [Online]

Available at:

https://doi.org/10.1109/ICACEA.2015.7164727

[Accessed 22 Oct. 2019].

[12] Medium. (2019). Introduction to Monolithic

Architecture and MicroServices Architecture.

[Online] Available at:

https://medium.com/koderlabs/introduction-to-

monolithic-architecture-and-microservices-

architecture-b211a5955c63

[13] Mens, T. and Demeyer, S. (2010). Software

Evolution. Springer-Verlag.

https://www.docker.com/
https://docs.docker.com/storage/
https://medium.com/koderlabs/introduction-to-monolithic-architecture-and-microservices-architecture-b211a5955c63
https://medium.com/koderlabs/introduction-to-monolithic-architecture-and-microservices-architecture-b211a5955c63
https://medium.com/koderlabs/introduction-to-monolithic-architecture-and-microservices-architecture-b211a5955c63

35

Proceedings of the 2nd South Asia Conference on Multidisciplinary Research 2019 Vol. 2

Copyright © TIRDI / ISSN: 2659 – 2010 online

[14] Preeth, E., Mulerickal, F., Paul, B. and Sastri,

Y. (2015). Evaluation of Docker containers based

on hardware utilization. In: 2015 International

Conference on Control Communication &

Computing India (ICCC). [Online] IEEE. Available

at: https://doi.org/10.1109/ICCC.2015.7432984

[Accessed 22 Oct. 2019].

[15] Russell, B. (2015). Passive Benchmarking

with docker LXC, KVM & OpenStack.

[16]. Seo, K., Hwang, H., Moon, I., Kwon, O.,

Kim, B. (2014) Performance Comparison Analysis

of Linux Container and Virtual Machine for

Building Cloud, Advanced Science and Technology

Letters 66:105-111.

[17] Stubbs, J., Moreira, W. and Dooley, R. (2015).

Distributed Systems of Microservices Using

Docker and Serfnode. In: 2015 7th International

Workshop on Science Gateways. [Online] IEEE.

Available at:

https://doi.org/10.1109/IWSG.2015.16 [Accessed

23 Oct. 2019].

[18] Turnbull, J. (2014). The Docker Book:

Containerization is the new virtualization.

[19] Tutorialspoint.com. (2019). Distributed

Systems. [Online] Available at:

https://www.tutorialspoint.com/Distributed-

Systems [Accessed 23 Oct. 2019].

[20] Xavier, M., Neves, M. and Rose, C. (2014). A

Performance Comparison of Container-Based

Virtualization Systems for MapReduce Clusters.

In: 2014 22nd Euromicro International Conference

on Parallel, Distributed, and Network-Based

Processing. [Online] IEEE. Available at:

https://doi.org/10.1109/PDP.2014.78 [Accessed 22

Oct. 2019].

[21] Zhang, Q., Liu, L., Pu, C., Dou, Q., Wu, L.

and Zhou, W. (2018). A Comparative Study of

Containers and Virtual Machines in Big Data

Environment. In: 2018 IEEE 11th International

Conference on Cloud Computing (CLOUD).

[Online] IEEE. Available at:

https://doi.org/10.1109/CLOUD.2018.00030

[Accessed 22 Oct. 2019].

https://doi.org/10.1109/ICCC.2015.7432984

