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Abstract 

Managing pests and diseases of crops is important to ensuring global food security. Fall 

armyworm (Spodoptera frugiperda) is an invasive pest in Sri Lanka, causing significant 

damage to maize cultivation on the island. Continuous monitoring of fall armyworms is 

essential to ensure the high productivity of the crop. Traditional investigation methods used to 

examine fall armyworm incidence, such as field surveys, are time-consuming and labor-

intensive. With the rapid development of remote sensing satellites, spectral reflectance 

measurements and vegetation indices have been used widely to monitor crop conditions. The 

present study was initiated to detect the spatial distribution of maize and the fall armyworm 

incidence in the Moneragala district, Sri Lanka with sentinel-2 multispectral images. The 

supervised maximum likelihood classification method was performed to determine the extent 

and spatial distribution of maize in the Moneragala district. Furthermore, remote sensing 

spectral vegetation indices, i.e., NDVI, SAVI, and NDRE and field surveys were performed to 

investigate the crop status and disease severity of fall armyworm. In the present study, three 

disease severity classes were recognized in terms of damage to the leaves, i.e., healthy (no 

visible leaf damage or less than 5% damage), slightly damaged (5% to 30% damage), and 

severely damaged (over 30% damage). The results revealed that NDVI, SAVI, and NDRE for 

healthy maize vegetation are 0.66±0.06, 0.88±0.03 and 0.41±0.02, respectively. Moreover, the 

disease severity classes of NDVI, SAVI, and NDRE were compared with One-way Analysis 

of variance (ANOVA) with the Tukey test for multiple comparisons. The results indicated a 

statistically significant difference between disease severity classes of NDRE (p<0.05), 

suggesting NDRE provides a more accurate measurement to detect fall armyworm incidence. 

The overall accuracy of the supervised image classification techniques was 89.78%, with a 
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kappa coefficient of 0.88. Results was validated using statistics of maize extent data obtained 

from the Department of Census and Statistics, Sri Lanka, demonstrating significant accuracy 

(p<0.05). Therefore, present study revealed that remote sensing is an effective tool for mapping 

maize vegetation cover and early identification of fall armyworm incidence, making it a more 

economical and effective alternative to conventional methods.  
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Background 

Maize (Zea mays L.) is one of the most widely cultivated and consumed cereal crops in the 

world, with a production of 1.1 billion MT in 2019 (World Data Atlas 2021). Maize has 

excellent economic importance around the world as human food, animal feed, and as a source 

of industrial products such as biofuels (Sheng et al. 2018; Adom and Liu 2002). It is reported 

that maize is rich in human nutrition, including proteins (about 5.7%), starch (about 46.2%) 

and lipids (about 2.2%) (Revilla et al. 2022; Ai and Jane 2016). Consequently, maize has 

become the most significant food production in the world (Ngie et al. 2014). 

Maize is primarily considered a dry zone crop and one of the main crops cultivated in the 

highlands and shifting (chena) types of highland cultivation. Maize currently holds a prominent 

position in Sri Lankan agriculture, and about 90,000 ha of land are dedicated annually in 

Anuradhapura, Monaragala, Ampara, Badulla, and Kurunegala districts (Dissanayake et al. 

2021). In Sri Lanka, Maize is mainly cultivated under rainfed conditions as a monocrop and a 

mixed crop with cowpea, green gram, groundnut, chilli, and finger millet (Ranaweera et al. 

1988). According to the Department of Agriculture, the annual maize production of Sri Lanka 

is around 380,000 MT, whereas direct human consumption is estimated at over 50,000 MT 

(Department of Agriculture Sri Lanka 2021). In Sri Lanka, maize requirements for 

“Thriposha”, which is an additional food very rich in nutritious, is being given to prevent 

maternal and child malnutrition, and other food industries exceed 18,000 MT annually. 

Furthermore, according to the Department of Animal Production and health statistics 2020, the 

total maize requirement for animal feed production approximates 480,000 – 540,000 MT per 
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annum. Thus, maize is the second most important crop on the island (Perera et al. 2019; 

Malaviarachchi et al. 2007). 

The fall armyworm (FAW), Spodoptera frugiperda native to tropical and subtropical regions 

of the western hemisphere from the United States of America to Argentina and is an 

economically destructive pest of many crop species, including rice, maize, tomato, and 

cabbage. FAW is an economically important pest of maize. It invaded Africa in 2016, causing 

a 30% to 60% yield loss (Mitti et al. 2021). Cruzz et al. (1999) reported FAW infest in all 

growth stages of maize plants. FAW caterpillars are usually found in whorls of young maize 

plants. In mature plants, they may infect ears, where they feed on soft tissues like kernels, soft 

inner leaves, and silk hair (Day et al. 2017). They rarely feed on older mature leaves (Makgoba 

et al. 2021). It is reported that maize yield loss due to FAW infestation in Ghana and Zambia 

was 45% and 40%, respectively (CABI 2017). Former studies revealed a strong positive 

relationship between FAW infestation density and yield loss (Overton et al. 2021; De Groote 

2020). Application of recommended synthetic pesticides and insecticides are control measures 

to prevent significant damage to corn fields. However, insecticide use is challenging as FAW 

can develop resistance to insecticides (Day et al. 2017).  

The life cycle of FAW lasts from 30 to 60 days and consists of moths, eggs, larvae, and pupae 

stages. FAW moths hide during the daytime and become active during the evening. The 

medium-sized moth has a wingspan of 32 to 40 mm. Forewings are shaded gray and brown. 

Hind wings are silver-white with a narrow dark border. In the forewing of the male moth, 

triangular white spots at the tip and near the center can be observed. The moth is a strong flier 

and can fly up to 100 km per night (Department of Agriculture Sri Lanka 2021). The female 
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moth lays eggs in masses on the underside of the leaves. But sometimes laid on the upper side 

of the leaves and stems. Eggs are cream, green or brown coloured. Female moths can deposit 

more than one layer of eggs before they are covered by the whitish anal hairs of the moth (Mitti 

et al. 2021). FAW usually has six instars (Capinera 2017). The first sign of infection is feeding 

marks made by the first instars. They only feed on one side of the leaf. Young FAW caterpillars 

use ballooning to spread to new host plants. Mostly, worm infection gets noticed only after 

large holes accompanied by the larval droppings in the whorls and on surrounding leaves (Mitti 

et al. 2021). FAW caterpillars are usually found in whorls of young maize plants. On mature 

plants, they may infect ears, where they feed on soft tissues like kernels, soft inner leaves, and 

silk hair. They rarely feed on older mature leaves. 

Surveillance and monitoring systems for early diagnosis of the FAW are essential to combat 

the threat posed by pests. Conducting extensive field surveys over a large area to detect the 

presence of pests and plant damage has become inefficient due to inadequate human, 

infrastructure, and financial resources. Misidentification and late identification of the pest 

result in yield loss and incorrect use of synthetic pesticides. Since the FAW is a transboundary 

pest, countries must collaborate to control the pest infestation (Mitti et al. 2021). Therefore, 

improved information systems and forecasting have been identified as essential in developing 

an effective management strategy for integrated pest management of FAW. Remote sensing 

technology can be used as an effective method to make a timely diagnosis of affected plants on 

a field scale. Remote sensing is a fast, non-destructive, less labour-intensive, and relatively 

cost-effective method for studying the biochemical and physical parameters of vegetation 

across large spatial areas. Since the images in remote sensing provide early detection before 

the symptoms become evident on ground surveys, there is sufficient time to take corrective 
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actions before any economic losses occur (Hatfiels and Pinter 1993). Various spectral 

vegetation indices have been developed to detect plant stress based on spectral measurements 

(Xue and Su 2017; Ngie et al. 2014). Khan et al. (2018) mentioned that spectral vegetation 

indices derived from multi-spectral images could evaluate moisture content, crop health, and 

nutrient content. Furthermore, remote sensing spectral analysis can predict crop disease, pest 

disease and weed infestation (Homolova et al. 2013). The visible, near-infrared microwave 

portions of the electromagnetic spectrum region are primarily used in agricultural studies since 

these spectral regions include wavelengths sensitive to the crops’ biological and physiological 

functions (Lillesand et al. 2008). Normalized difference vegetation index (NDVI) derived with 

reflectance measurements of RED and NIR is the most common and widely related to leaf area 

index and canopy photosynthesis. Normalized Difference Red Edge (NDRE) is a spectral index 

that estimates chlorophyll content and vegetation damage ranging from nutrient deficiencies to 

pest and disease damage. NDRE is derived with reflectance measurements for Near-infrared 

and vegetation red edge bands. Soil-Adjusted Vegetation Index (SAVI) derived from 

reflectance measurements for visible red and Near-infrared bands, which measures the 

vegetation cover of arid zones by minimizing soil brightness influenced by soil brightness 

(Eos.com 2019; Xue and Su 2017). Former studies reported that spectral vegetation indices 

play a significant role in detecting yellow rust, powdery mildew, aphid in wheat, late blight in 

tomatoes, and spider mite in cotton (Fitzgerald et al. 2004; Yang 2010; Sankaran et al. 2010; 

Huang et al. 2007). Moreover, the accuracy of mapping pests is reported to be approximately 

equal to hyperspectral and multi-spectral remote sensing images (Yang 2010). Zhang et al. 

(2015) suggested that multi-spectral data-based analysis is convenient due to its lower costs 

and higher availability.  
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Currently, the main challenge of maize production reported by Sri Lankan farmers is yield 

reduction owing to pests and diseases. FAW is a new pest in Sri Lankan soil and was first 

reported in August 2018 it is reported that FAW is a destructive and rapidly spreading insect 

which causes significant damage to the crop. It caused massive damage to large-scale maize 

monocropping systems (Perera et al. 2019). The outbreaks of this pest can devastate the 

economy, food, and nutrition security of the entire country. Monaragala district, located in the 

dry zone in Sri Lanka, is one of the districts with the highest area under maize cultivation and 

one of the first districts where FAW infestation was reported (Perera et al. 2019). Dry and 

intermediate zones in Sri Lanka are best suited for commercial cultivation. MI maize hybrid 

01, 02, 03, 04 and 05 are locally produced hybrid varieties. Seed requirements of open-

pollinated varieties are varied from 15kg per hectare, and for hybrids, it is 12kg per hectare 

(Department of Agriculture Sri Lanka 2021). According to the Department of Agriculture 

statistics, 55% of the cultivated extent of maize was affected in 2018 and 75% in 2019. 

Furthermore, a 15% yield loss was caused by the FAW during the early years of the invasion 

(Weligamage et al. 2020). Therefore, rapid assessment of the extent and severity of damage 

caused by FAW is important for decision-making in crop production. Farmer education and 

community action are critical in management of FAW population using an integrated pest 

management approach (Mitti et al. 2021). Although in-depth studies to determine the 

infestation of FAW are scanty, this knowledge is vital to determine the fate of maize cultivation 

in the country. Intensive research needs remote sensing techniques to be developed to 

implement management measures due to FAW infestation. The current study, therefore, 

focuses on investigating FAW damage in maize fields in the Monaragala district, Sri Lanka. 

Moreover, such information helps agricultural administrators and policymakers to decide 
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whether to implement price regulation or provide financial subsidies/ agricultural insurance in 

damaged regions.  

Methods 

Study site 

Monaragala district, the second-largest district in Sri Lanka, which faces the east and southeast 

direction of Sri Lanka, was selected for the study (Figure 1). The total area of the Monaragala 

district is 5659 km2 (6° 17'', 7° 28'' N; 80° 50'', 80° 35'' E). The primary livelihood of the people 

living in the district is agriculture. The district receives a mean annual rainfall of 1500 mm, 

usually limited to 4-5 months of the year. The eastern, south, and south-eastern parts of the 

district are relatively drier than the higher north-western parts. Monaragala district has a mean 

annual temperature ranging from 22.5oC to 27.5oC. The major soil types of the district are 

reddish-brown earth, red, yellow podzolic, and low-humic clays. It is reported that Monaragala 

district contributes to more than 30% of the maize production in Sri Lanka (Department of 

Census and Statistics 2022).  
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Figure 1. Map of the study area, including maize farms in Monaragala District. 

 

Satellite data processing 

The current study used freely available multi-temporal data from optical sensor, Sentinel – 

2(L2A) satellite images. The satellite image of less than 10% of cloud cover was downloaded 

from QGIS 3.16 (QGIS 2021). The cropping seasons on the island are synonymous with two 

monsoons, i.e., Northeast-monsoon and Southwest-monsoon seasons. The major maize 

cultivation period of Sri Lanka falls during the North-east monsoon from September to March 

in the following year. Satellite images of maize cultivation at mature stages of the major rice 
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cultivation season of Sri Lanka in 2019, 2020, and 2021 were utilized to map maize fields in 

Moneragala district, Sri Lanka. Moreover, it is reported that FAW feeds on maize cultivation 

during the late whorl stage of plants (Lowry et al. 2022). Therefore, the current study utilized 

satellite images at the late whorl stage fell in November of maize cultivation to investigate 

FAW incidence (Table 1). The current study selected 20 maize farms with more than 1 ha of 

continuous monocropping as study sites. Farm locations were collected using Garmin E-Trex 

GPS receiver (Figure 1). The image classification algorithm supervised Maximum Likelihood 

Classification (MLC) approach was performed to classify maize vegetation cover from the 

other land use types. Ground Reference Points (GRPs) were collected through field visits as 

described by Rwanga and Ndambuki (2020) to perform image classification. The GRPs were 

collected from the homogeneous areas of maize vegetation to avoid mixed pixels. The area of 

maize fields each year was calculated considering pixel area estimation. Thus, the extent of 

maize cultivation over the study period was calculated. The image classification accuracy was 

evaluated with the kappa coefficient. Furthermore, the area estimated based on satellite remote 

sensing was compared with maize extent obtained from the Department of Census and 

Statistics, Sri Lanka.  

 

Table 1. Acquisition dates of satellite images for mapping of maize vegetation extent and Fall 

armyworm incidence. 

Satellite image acquisition  Cropping season 

2018/2019 2019/2020 2020/2021  

Maize vegetation extent 

mapping 

2019.01.03 2020.03.03 2020.11.28 

Fall armyworm incidence 

mapping 

2018.11.14 2019.11.14 2020.11.28 
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 Computation of spectral vegetation indices 

The sensitivities of spectral features for FAW damage analysis were examined using three 

spectral vegetation indices related to leaf area index and canopy morphology variations. 

Vegetation indices, i.e., NDVI (equation 1), SAVI (equation 2), and NDRE (equation 3), were 

computed to evaluate the growth dynamics at the foliar level (Table 2). 

 

Table 2. Remote sensing spectral indices derived with reflectance measurements for visible red 

and near infrared and red edge bands. L represents the soil brightness correction factor (0.5). 

 

Reference data collection  

Ground truth data regarding the total extent of healthy and damaged maize cultivation were 

collected from the Monaragala provincial Department of Agriculture and the Department of 

Census and Statistics. Moreover, meteorological parameters in terms of monthly rainfall, 

monthly average minimum, maximum temperature, and relative humidity were collected 

from the Department of Meteorology to examine the climatic factors that influence the 

infection of FAW.  

Equation 

no. 

Spectral index Equation 

1 Normalized Difference Vegetation Index  

2 Soil-Adjusted Vegetation Index  

3 Normalized Difference Red Edge  

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑 

𝑁𝐼𝑅 + 𝑅𝑒𝑑 
 

𝑆𝐴𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑 

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿 
(1 + 𝐿) 

𝑁𝐷𝑅𝐸 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒
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Assessment of the FAW infestation through field scouting 

The damage severity of the FAW was surveyed through field scouting in a semi-systematic 

pattern according to the scouting protocols of FAO (Food and Agriculture Organization of the 

United Nations) and CIMMYT (International Maize and Wheat Improvement Centre). Scout 

walking was done in a “W” pattern stopping at five different locations to cover the entire field. 

To reduce the edge effect, two border rows were avoided. At each location, ten plants were 

investigated for signs and symptoms of the FAW. The signs in the upper three leaves were 

observed and categorized according to the severity of the damage. Based on the degree of foliar 

damage, the infection status (the extent of the leaf damage) of each sampling point of the field 

was assessed and assigned to one of the three severity classes, i.e., healthy, slightly damaged, 

and severely damaged (Figure 2). The scoring scale used is shown in Table 3.  

 

 

 

 

 

Figure 2. Visually assessment of the leaf damage severity (a) Healthy (b) Slightly damaged, 

and (c) Severely damaged. 
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Table 3. The scoring scale of damage level of fall armyworm (Source: Zhang et al. 2015; 

Prasanna et al. 2018). 

 

 

Data analysis 

Two sample t-test (p <0.05) was performed to determine whether there was a significant 

difference between the maize extent estimated based on remote sensing techniques and those 

published by the Department of Census and Statistics, Sri Lanka. Spectral vegetation indices 

values of each maize field obtained in 2019, 2020, and 2021 were statistically compared with 

One-Way ANOVA and Tukey HSD pairwise comparison (p <0.05). Furthermore, Pearson's 

correlation analysis was performed to determine the correlation between spectral vegetation 

indices and climatic factors in terms of rainfall, temperature, and relative humidity. Time series 

data of the FAW population over three years (from 2019 to 2021) was collected from the 

Department of Agriculture, Monaragala. These ground-truth data were compared with the 

results from the statistical analysis to examine the sensitivity of spectral vegetation indices to 

FAW incidence. 

 

 

Explanation/definition of damage Severity Classes 

No visible leaf damage or total leaf damage is less than 5% 

of the surveyed plants 

Healthy 

5% to 30% damage to upper three leaves  Slightly damaged 

Over 30% damage to upper three leaves Severely damaged 
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Results  

Figure 3 (a, b, and c) depicts the classification of maize fields based on time-series remote 

sensing images. According to the classification results, the maximum overall accuracy and 

kappa coefficient of extent mapping of the present study is 89.74% and 0.88, respectively. 

Interestingly, overall accuracy and kappa coefficient are similar for all cases (Table 4). 

Moreover, the comparison between maize area estimated with remote sensing techniques and 

those published in the Department of Census and Statistics was not statistically significant (p 

< 0.05; Table 5). Results show that the highest NDVI, SAVI and NDRE values were obtained 

from 2020/2021 cultivation season, and consequently, the highest yield was obtained from a 

2020/2021 cultivation. Furthermore, NDVI, SAVI, and NDRE values of 2020/2021 cultivation 

season show a significant difference (Figure 3 d, e, and f; p <0.05) from the other cultivation 

seasons. This result is consistent with the maize area calculation (Table 5). 
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Figure 3. Spatial distribution of maize cultivated area in Monaragala district based on remote 

sensing analysis. Maize grown area for major cropping seasons of (a) 2018/2019 (b) 2019/2020 

(c) 2020/2021; Remote sensing spectral indices d) NDVI, (e) SAVI, and (f) NDRE for major 

cropping season of 2020/2021. 

 

Table 4. Overall accuracy and Kappa coefficient of extent mapping. 

 

Season of cultivation Overall accuracy (%) Kappa coefficient 

2018/2019  75.63%  0.72 

2019/2020 74.47%  0.71 

2020/2021 89.74%  0.88 



2023 57(8 )

65

 

Table 5. Comparison of maize extent estimated based on remote sensing techniques with 

those published at the Department of Census and Statistics. 

Season of cultivation 

Area estimation (ha) 

Remote sensing method 

Data available at the 

Department of Census and 

Statistics 

2018/2019  25,519  28,253 

2019/2020  24,873  25,716 

2020/2021  26,844  27,587 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison of ground truth data and remote sensing spectral vegetation indices 

(Bars show the standard deviation of the spectral vegetation indices). 

The different spectral values indicated the disease severity. The spectral vegetation indices 

values obtained for the healthy category of NDVI, SAVI and NDRE were 0.66 ±0.06, 0.88 
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±0.03, and 0.41 ±0.02, respectively (Table 6). The severity analysis results show a significant 

difference between the healthy and damaged classes in NDVI and SAVI spectral features but 

not a substantial difference between the slightly and severely damaged classes. NDRE spectral 

feature shows a significant difference (p < 0.05) between all three severity classes (Table 6). 

The healthy extent of maize cultivation shows that the estimated area based on spectral 

vegetation indices is consistent with the ground truth data (Figure 4). Hence, the accuracy of 

the method is further confirmed. Furthermore, according to Figure 5, the highest average 

rainfall and relative humidity have been recorded in the 2019/2020 cultivation season, in which 

the greatest FAW damage was recorded. 

 

 

 

 

 

 

 

Figure 5. Relationship between damage extent by army fall worm and climatic factors in terms 

of rainfall (a) and relative humidity (b) during the major cropping seasons 2018/2019, 

2019/2020, 2020/2021; in Moneragala district. 
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Table 6. Means of the spectral features in disease severity classes. 

 

 

 

The mean of spectral features within a column followed by the same superscripts are not 

significantly different (p < 0.05). (± shows the standard deviation of the spectral vegetation 

indices in each severity class). 

Discussion 

FAW is an invasive pest in Sri Lanka and increases the risk of food insecurity on the island. 

Early detection of FAW is essential to prevent significant yield loss. Therefore, continuous 

monitoring of FAW incidence is essential to ensure the high productivity of crops.  

Prasanna et al. (2018) mentioned that the growth stages of maize are divided into the early 

whorl stage, late whorl stage, tasseling/ silking, and maturity. At the early stages of the crop, 

the soil surface is hardly covered by the canopy, but good ground cover can be observed at the 

maturity stage. Therefore, satellite images acquired in the late whorl stage show more soil 

background since plants are small. The good ground cover by the canopy ensures that each 

pixel of the training samples for maize crops in supervised classification represents the crop. 

Therefore, satellite images acquired in the maturity stage of maize were used for extent 

mapping in this study. According to field observations and information from the Department 

of Agriculture, Sri Lanka, the major maize cultivation period usually begins on 15th September 

and lasts until 15th March of the following year. Thus, extent mapping of maize cultivation was 

performed using multispectral images acquired between late November and March.  

Severity Class NDVI SAVI NDRE 

Healthy 0.66a ± 0.06 0.88a ± 0.03 0.41a ± 0.02 

Slightly Damaged 0.53b ± 0.04 0.73b ± 0.06 0.36b ± 0.00 

Severely Damaged 0.45b ± 0.02 0.68b ± 0.05 0.29c ± 0.01 
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The current study used freely available Sentinel-2 satellite images since Sentinel-2 provides 13 

spectral bands of multispectral images with a high spatial resolution (Sentinel-2 User 

Handbook 2015). Moreover, Sentinel-2 has an appropriate spatial and spectral resolution in the 

near-infrared region, with three additional vegetation red edge bands with 20 m spatial 

resolution compared to the latest Landsat OLI/TIRS (Astola et al. 2019; Kumbula et al. 2019). 

The results of this work indicated that the overall accuracy of the image classification 

procedure was 89.78% with a kappa of 0.88, suggesting the Maximum Likelihood algorithm 

is more reliable in maize field extent mapping. Our results corroborate those former studies 

(Valero and Alzate 2019; Mustapha et al. 2010), reporting that the supervised maximum 

likelihood classification algorithm can be considered a reliable technique regarding vegetation 

mapping. Moreover, Rwanga and Ndambuki (2017) mentioned that if the kappa coefficient is 

greater than 0.7, the strength of agreement is good. These results were further confirmed by 

comparing of the area estimated with remote sensing techniques and maize cultivated area 

published in the Department of Census and Statistics in which there is no significant difference 

(p < 0.05) between maize area estimations. Hence, our result suggested that mapping the spatial 

distribution of the maize is effective using the sentinel-2 multispectral images. 

However, identifying FAW incidence in the tasseling / silking or maturity stages is too late to 

minimize the economic loss. A former study reported that the most vital stage for maximum 

production of maize is the late whorl stage. This is because, at the late whorl stage, eight to 

twelve leaves are fully unfolded (Ngie et al. 2014). Therefore, the suitable period for FAW 

incidence mapping is the late whorl stage which falls 28 to 42 days after emergence. 

Considering the life cycle of maize, and the crop calendar in the Moneragala district, the late 
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whorl season falls in mid-November for the major maize cultivation season. Therefore, 

multispectral satellite images acquired in November were used to map FAW incidence. 

FAW typically has six larval instars. The young FAW larvae feed on the undersides of leaves, 

sucking chlorophyll from the leaves, leaving a transparent window. The third to sixth instars 

have developed jaw and cause the most extensive defoliation resulting in leaf holes (Mitti et 

al. 2021). These damage symptoms cause a significant reduction in leaf area, biomass and 

chlorophyll content. Therefore, NDVI, SAVI, and NDRE vegetation indices related to 

analyzing leaf area index and canopy morphology variations were used in this study to examine 

the sensitivity of spectral features candidates for FAW infestation. The current study revealed 

that NDRE is more effective in investigating FAW incidence as NDRE is calculated using the 

combination of the NIR and red edge bands (Table 6; Figure 4). Corroborating our finding, 

Datt et al. (2005) found the red edge region as a good estimator of chlorophyll-related stress. 

Furthermore, former studies mentioned that the red edge index is more effective in determining 

canopy chlorophyll content of maize (Adamczyk and Osberger 2015; Li et al. 2014; Delegido 

et al. 2013).  

Our field observation revealed FAW causes patchy damage in the field. Corroborating this 

observation, Zhang et al. (2015) showed that most of the upper leaves of slightly damaged 

plants remain undamaged owing to the feeding pattern of the FAW from the bottom to the top 

of crops. Consequently, such plants might have a slight spectral change, thus lacking a clear 

spectral signature to be sensed. Thus, the results of the severity analysis with NDVI and SAVI 

of the current study manifested a statistically significant difference between the healthy and 

damaged classes, whereas there is no statistically significant difference (p <0.05) between the 

slightly and severely damaged classes. However, our result manifested statistically significant 
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between (p<0.05) all the three severity classes obtained with NDRE index. Former studies 

reported that NDRE is a sensitive index to examine crops with lower chlorophyll content and 

hence the chlorophyll content variation throughout the foliage (Boiarskii and Hasegawa 2019; 

Li et al. 2014). Hence, NDRE is the most suitable spectral feature candidate to predict FAW 

damage. 

The spectral vegetation indices values obtained for the healthy category by this study are lower 

than the standard values for the healthy category. For example, if the crop is healthy NDVI 

value is between 0.66 and 1. If moderately healthy, it ranges from 0.33 to 0.66. The NDRE 

value in the healthy crop is between 0.6 and 1 (Eos.com 2019). However, the NDVI and NDRE 

values obtained for the healthy category in this study were 0.66±0.06 and 0.41±0.02, 

respectively. This is because the maize fields in the late whorl stage were used in the study, 

and the standard values are for mature stages. Ngie et al. (2014) revealed that spectral 

vegetation indices values gradually increased with the growth of the crop life cycle of maize.   

Capinera (2017) mentioned that warm and humid weather conditions influence the propagation 

of FAW and hence can cause severe crop damage. According to the current study, the highest 

average rainfall and relative humidity have been recorded for the cultivation season in 

2019/2020, in which the most significant FAW damage is recorded, suggesting wet conditions 

with abundant rainfall result in lush vegetation, which is favourable for an expansive FAW 

population. A former study showed that NDVI is proportional to the precipitation and inversely 

proportional to the temperature (Ghebrezgabher et al. 2020). Corroborating this observation, 

the present study shows that all three vegetation indices were negatively correlated with the 

minimum monthly average temperature. Thus, the result further suggests FAW infestation is 

rapid at low temperature and humid conditions.  
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Remote sensing technologies have yet to be widely used in the Sri Lankan context. The present 

study shows the ability to use remote sensing for early identification of FAW incidence leading 

to site-specific control. Also, it reduces the cost of field investigation, making it a more 

economical and effective alternative to conventional methods. Moreover, the study revealed 

that free access to Sentinel-2 imagery facilitates the implementation of pest management 

strategies. Hence, remote sensing is an effective tool for the early identification of FAW 

incidence in Sri Lanka. 

Conclusions 

Invasive pests, FAW increases the risk of food security. Therefore, early detection of FAW is 

essential to prevent significant yield loss.  This study examined the feasibility of using sentinel-

2 multi-spectral images to detect the spatial distribution of maize and the FAW incidence using 

the Monaragala district. The results suggest that sentinel-2 multispectral images can be used to 

map the spatial distribution of maize cover in Moneragala district while remote sensing spectral 

index, i.e., NDRE is the best to sense the severity of FAW damage of maize vegetation. The 

recent availability of free access to Sentinel-2 imagery facilitates the use of remote sensing 

technology in implementing of pest management strategies, which is essential to enhancing 

food security. 
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