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Abstract: Cu2O homojunction solar cells were fabricated using potentiostatic electrodeposition
technique. n-Cu2O thin films were grown in an acetate bath while p-Cu2O thin films were grown in a
lactate bath. In the growth of n-Cu2O films, cupric acetate concentration, pH and temperature of the
bath, deposition potential and duration (film thickness) and annealing temperature were investigated.
In the growth of p-Cu2O on n-Cu2O, concentration of copper sulphate and lactic acid solutions, pH
and temperature of the bath, deposition potential and duration were investigated. In addition, the
procedure of sulfidation of p-Cu2O film surface using (NH4)2S vapor, before depositing Au front
contact, was also optimized to enhance the photoactive performance. The structural, morphological
and optoelectronic properties of the Cu2O films were investigated using scanning electron microscopy
(SEMs), high energy X-ray diffraction (HEXRD), hard X-ray photoelectron spectroscopy (HAXPES),
spectral response and current–voltage (J-V) measurements. The best Cu2O homojunction solar cell
exhibited Voc = 460 mV, Jsc = 12.99 mA·cm−2, FF = 42% and η = 2.51%, under AM 1.5 illumination.
Efficiency enhancement with the record high Jsc value for the Cu2O homojunction solar cell has
mainly been due to the optimization of pH of the n-Cu2O deposition bath and lactic acid concentration
of the p-Cu2O deposition bath.

Keywords: electrodeposition; Cu2O; homojunction; short circuit current density

1. Introduction

Freely available abundant sunlight can be easily converted into electricity via Photo-
voltaic (PV) devices, which is a viable solution for preventing an energy crisis [1]. However,
commercially available PV devices are relatively expensive; therefore, the research commu-
nity focuses its attention on developing solar cells with low-cost materials and processing
techniques. Recently, there has been increased attention to ultralow cost cuprous oxide
(Cu2O) material for PV applications due to its direct band gap of 2 eV, high absorption
coefficient, material abundance, non-toxicity, possibility of growth of both n- and p-type
conductivities and availability of large-area, low-cost growth techniques [2–12]. The con-
ductivity of the Cu2O is determined by the presence of lattice defects of cubic crystal
structure having a lattice constant of 4.27 Å [13]. Until 1986, Cu2O was known as a p-type
material due to the Cu vacancies created in the lattice structure [14–20]. Therefore, earlier
Cu2O-based PV devices were fabricated as Schottky junctions or heterojunctions with
suitable materials [2,21–28]. In 1986, the possibility of growth of n-Cu2O was first reported
by the method of electrodeposition in a slightly acidic bath by Siripala et al. [29]. Since then,
n-Cu2O thin films have been successfully grown by the electrodeposition method to use in
many PV applications [8,30–34]. Now, it has been established that the electrodeposition
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of Cu2O films in acidic baths is attributed to n-type photoconductivity, and attributed to
p-type photoconductivity in basic baths [30,35]. Interestingly, it is very important to utilize
n-type conductive Cu2O in developing low-cost PV junction devices since the electron
affinity of Cu2O is low compared to many low-cost oxide semiconductor materials; there-
fore, there is a very good potential for developing good quality low-cost junction devices.
Among many possible junctions that may be developed for device applications, Cu2O
homojunction will be of great interest because lattice continuity across the junction reduces
defects created at the interface, thereby reducing the density of defect electronic states
created at the junction. However, finding a suitable low-cost fabrication method to produce
a clean p-n homojunction of Cu2O will be a challenging task. As reported previously,
Cu2O homojunction could be created using the inexpensive electrodeposition technique,
which has advantages such as low cost, scalability, low-temperature process, etc. [36–38].
Notably, it is extremely important to be aware of the possibility of the introduction of
thin interfacial layers or other defects at the electrodeposited p-n homojunction due to the
inherent nature of the chemical processes involved in the electrodeposition method. Thus,
when developing Cu2O homojunction PV devices using the electrodeposition technique,
the dependence of the device performance on deposition parameters will be at a crucial
stage. In this investigation, we have focused on this aspect when improving the efficiency
of Cu2O homojunction solar cells.

The theoretical efficiency limit for the Cu2O homojunction is 20% [39], but the reported
efficiencies of Cu2O homojunction solar cells were very low compared to the theoretical
limit of 20%. In general, band continuity across the homojunction can be expected because
band edge positions of both n- and p-materials are the same. However, junction properties
may depend on the growth conditions and adopted fabrication techniques. As mentioned
before, there is a possibility of growing a very thin interfacial layer at the junction during the
electrodeposition process, leading to a band mismatch. Therefore, among other possibilities,
interfacial mismatching at the p-n junction may be responsible for the reported poor
efficiencies of Cu2O homojunction solar cells. Kafi et al. explored the interfacial properties
of n-Cu2O/p-Cu2O homojunction and reported that the relative band edge positions
of n-Cu2O and p-Cu2O can be shifted by changing the pH of the n-Cu2O and p-Cu2O
deposition baths [40]. The study showed that it was able to enhance the efficiency of the
device with higher short circuit current density by adjusting the pH value of the deposition
baths. Recent developments of the Cu2O homojunctions are shown in Table 1. Previously,
Jayathilaka et al. reported the highest efficiency of 2.64% for the Cu2O homojunction solar
cell while pre- and post-annealing of homojunction and surface sulfidation of n-Cu2O and
p-Cu2O films have been useful for the improvement of the efficiency of Cu2O homojunction
device [41].

Table 1. Reported photoactive performance of Cu2O homojunction solar cells.

Voc (mV) Jsc (mA·cm−2) FF % η % Reference

320 1.23 35 0.102 [42] (2009)
423 2.5 27 0.29 [36] (2010)
621 4.07 42 1.06 [37] (2012)
120 3.97 23 0.104 [43] (2012)
420 2.68 38 0.42 [44] (2015)
287 12.4 25 0.89 [45] (2016)
490 12.8 - 2.64 [46] (2020)
324 12.67 30.7 1.3 [47] (2020)

In addition, we have reported earlier that the development of a Cu2O homojunction is
possible by improving the interfacial properties of the n-Cu2O and p-Cu2O homojunction,
as well [47] where reported device performance was Voc of 324 mV, Jsc of 12.67 mA·cm−2,
FF of 30.7% and η = 1.3%, under AM 1.5 artificial illumination. Therefore, as mentioned
previously, when adapting the electrodeposition technique for the fabrication of the ho-
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mojunction of Cu2O, it is extremely important to study the effects of all the deposition
parameters on the performance of the Cu2O homojunction device.

To improve the performance of the Cu2O homojunction device, in this study, the junc-
tion was started with previously reported fabrication conditions [47], and all the fabrication
conditions were carefully fine-tuned. This led to enhancing the device’s efficiency with the
improvement of open circuit voltage, fill factor and, especially, short circuit current density
to the highest reported value of 12.99 mA·cm−2.

2. Experimental

Ti/n-Cu2O/p-Cu2O/Au homojunction device fabrication was initiated using previ-
ously optimized conditions [39]. We used 2 × 1 cm2 Titanium sheets as a substrate for
device fabrication. Then, Ti sheets were cleaned with detergent, diluted HCl, distilled
water, and finally ultrasonicated in distilled water. Electrodeposition of n-Cu2O thin films
was potentiostatically carried out on Ti sheets at −200 mV vs. Ag/AgCl for 60 min in a
three-electrode electrochemical cell having 0.1 M sodium acetate and 0.01 M cupric acetate.
The counter and the reference electrodes were platinum plates and Ag/AgCl, respectively.
Before the film deposition, the pH of the bath was adjusted to 6.1 by adding diluted HCl.
During the deposition, the bath was stirred at 50 rve·min−1 and the bath temperature was
maintained at 55 ◦C. After the film deposition, electrodes were immediately washed in
distilled water and dried in air. All the Cu2O/Ti electrodes were annealed at 100 ◦C for
24 h. p-Cu2O thin films on n-Cu2O/Ti electrodes were potentiostatically electrodeposited
at −450 mV vs. Ag/AgCl for 45 min in a three-electrode electrochemical cell containing 3 M
lactic acid, 0.4 M cupric sulfate and 4 M NaOH. The counter and the reference electrodes
were platinum plate and Ag/AgCl, respectively. pH of the p-Cu2O deposition bath was
adjusted to 13.0 by adding NaOH solution to the bath. The temperature of the electrolyte
was maintained at 60 ◦C and baths were continuously stirred at 200 rev·min−1 using a
magnetic stirrer. After the film deposition, electrodes were immediately washed in distilled
water and dried in air. For the surface modification of p-Cu2O thin films, they were sulfided
by exposing them to ammonium sulfide gas by simply holding the face down above a
beaker containing 20 vol% (NH4)2S solution at room temperature for 8 s and then the
films were immediately thoroughly rinsed with distilled water. Thin Au spots having
an area of ∼2 × 2 mm2 were deposited by sputtering at 20 mA for 240 s on the sulfided
p-Cu2O thin films to obtain the front contact with the device. Electrical contacts to the
junctions were made via the connections to the Ti substrate and Au spots. All the chemicals
used were reagent grade. Devices fabricated under the above conditions were used as the
control samples to monitor the change in performance during the fine-tuning stages of the
fabrication conditions.

Fabrication conditions were optimized monitoring the photoactive performance of
the complete device by changing one fabrication condition at a time. First, the growth
conditions of the n-Cu2O layer on the Ti substrate were optimized. Different sets of
devices were prepared by changing the previous deposition conditions of the cupric acetate
concentration of the bath, sodium acetate concentration of the bath, pH of the bath, stirring
speed of the bath, temperature of the bath, deposition potential, deposition duration and
annealing of the samples. Then growth conditions of the p-Cu2O layer on n-Cu2O were
studied. Again, different sets of devices were prepared by changing the above condition
of lactic acid concentration of the bath, cupric sulfate concentration of the bath, pH of the
bath, stirring speed of the bath, temperature of the bath, deposition potential, deposition
duration, for depositing p-Cu2O on n-Cu2O. Further, the sulfidation process was optimized
by changing the exposure durations of 20 vol% (NH4)2S solution, and growth conditions of
the Au front contact layer deposition were optimized by changing the sputtering conditions.
In addition to the Au sputtering, the vacuum coating technique was also tried out to grow
the Au front contact. Hence, in this investigation, almost all possible p-n junction fabrication
steps were optimized to maximize the performance of the Cu2O homojunction solar cell
device. Deposition solutions were prepared with distilled water and used reagent-grade
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chemicals. Surface morphology of n- and p-films was studied using scanning electron
microscopy (SEM).

Structural, morphological and optoelectronic characterizations of the devices were
investigated. Surface morphology of n- and p-films was studied using scanning electron
microscopy (SEM) using a Hitachi (SU6600) scanning electron microscope, Ibaraki, Japan.
HEXRD experiment was conducted using the BL04B2 beamline at SPring-8, Sayo, Japan.
A Si (220) monochromator was used to acquire incident X-rays with a wavelength of
0.20095 Å (energy ≃ 61.7 keV), and the intensity of the incident X-rays was controlled by
a monitored 99.99% Ar gas-filled ionization chamber. To minimize X-ray scattering from
air, samples were stored in a vacuum bell jar. Three CdTe detectors were used to collect
the diffracted X-rays over a broad angular range. For the HEXRD analysis, the Cu2O thin
film was scraped out from the Ti substrate and inserted into a fused silica capillary with
dimensions of 1 mm inner diameter, 0.2 mm wall thickness, and 70 mm length. Hard X-ray
photoelectron spectroscopy measurements were performed at BL46XU at SPring-8. The
incident X-ray beam with photon energy 7.94 keV was monochromated using a Si (111)
double crystal and a Si (444) channel-cut monochromator. Photoelectron spectra were
observed using a hemispherical electron energy analyzer (R-4000L1-10kV, Scienta Omicron
AB, Uppsala, Sweden). The opening of the analyzer slit was a 5 mm rectangle, and the
passing energy was set to 200 eV. The analyzer was perpendicular to the X-ray axis and
parallel to the polarization vector. The X-rays were incident at an incident angle of 80◦, and
the emitted photoelectrons were detected at an emission angle of 10◦ concerning the surface
normal. The base pressure in the main chamber was between 1 × 10−6 to 5 × 10−6 Pa. All
samples were connected to the ground of the HAXPES system via the sample holder.

The dark and light current–voltage characteristics of the devices were measured by
chopping the white light of 1.5 AM. Spectral response measurements of the devices were
obtained using a phase-sensitive detection method to monitor the photocurrent signal
produced by a chopped monochromatic light beam at a chopping frequency of 53 Hz.
The experimental setup consisted of a lock-in amplifier (Stanford Research-SR 830 DSP,
Stanford Research Systems, CA, USA), a potentiostat (Hukoto Denko HAB 151, Hukoto
Denko, Japan), a monochromator (Sciencetech 9010, Photonic Solutions Ltd., Edinburgh,
UK) and a chopper (Stanford-SR 540, Stanford Research Systems, CA, USA).

3. Results and Discussion

To check the sensitivity of the depositing parameters on the n-Cu2O films deposition
for the p-n homojunction, different sets of devices were fabricated by slightly changing the
predetermined deposition parameters of cupric acetate concentration of the bath around
0.01 M, sodium acetate concentration of the bath around 0.1 M, temperature of the depo-
sition bath around 55 ◦C, stirring speed of the bath around 50 rev·min−1 and deposition
potential around −200 mV vs. Ag/AgCl, by keeping the deposition conditions of the
p-layer and the other deposition parameters to be the same. We have not observed any
significant deviation in the performance of the homojunction device from the previously
reported conditions for the growth of the n-Cu2O layer [47]. Therefore, in this study, we
have maintained these conditions when depositing n-Cu2O layers for the homojunction.

Next, a set of devices was prepared by changing only the pH value of the deposition
bath of n-Cu2O films from 5.7 to 6.2, adding HCl to adjust the pH (the pH of the natural bath
was 6.5). The photoactive properties of the resulting devices are shown in Table 2. Results
revealed that the best pH for the n-Cu2O film deposition bath when fabricating the p-n
homojunction was 5.8. Further, Table 2 illustrates that the performance of the homojunction
device is extremely sensitive to the pH of the deposition bath. This observation is very
significant in developing Cu2O homojunction devices. It has been reported previously
that the relative band edge position of the n-Cu2O can be shifted by adjusting the pH
value of the n-Cu2O deposition bath [40]. Therefore, the reason for the device fabricated
with n-Cu2O films deposited at the bath pH of 5.8 resulting in better performance, may
be due to the better alignment of the band edge positions between n-Cu2O and p-Cu2O



Coatings 2024, 14, 932 5 of 12

layers of the p-n homojunction. Figure 1 shows the SEMs of the n-Cu2O films deposited at
(a) pH of 6.1 and (b) pH of 5.8. It has been previously reported that film morphology at
the p-n junction could also determine the photovoltaic properties of the homojunction [36].
However, SEM images shown in Figure 1 do not suggest such a contrast in morphology;
therefore, the observed remarkable increase in Voc and Isc values may not be due to the
change in morphology alone. According to previous observations [40,48], the sensitivity of
the pH to the relative flat band potential (or relative band edge position) of both p- and n-
Cu2O films in contact with electrolytes or metals will be the reason for the possibility of
better alignment of the band edges at the junction.

Table 2. Voc and Jsc values of devices grown under different n-Cu2O bath pH values.

pH 5.7 5.8 5.9 6.0 6.1

Voc (mV) 350 410 375 362 311
Jsc (mA·cm−2) 6.9 12.1 10.1 5.8 4.9
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In optimization of p-Cu2O growth conditions when depositing p-Cu2O on n-Cu2O,
different sets of devices were fabricated by slight change in the cupric sulfate concentration
around 0.4 M, pH of the bath, temperature of the bath around 60 ◦C, stirring speed of the
bath around 200 rev·min−1 and deposition potential around −450 mV vs. Ag/AgCl. The
photoactive performance of the device revealed that the best cupric sulfate concentration,
temperature of the deposition bath, stirring speed of the bath and deposition potential were
0.4 M, 60 ◦C, 200 rev·min−1 and −450 mV vs. Ag/AgCl, respectively, for the growth of
p-Cu2O, as reported earlier [47]. The dependency of the photoactive properties of the device
on the lactic acid concentration of the bath is shown in Table 3. As shown in Table 3, the
lactic acid concentration of the bath makes a huge impact on the photoactive performance
of the device. The complexing agent lactic acid of the p-Cu2O deposition bath determines
the kinetics of Cu ions controlling the growth of the material [36].

Table 3. Lactate concentrations on p-Cu2O deposition baths produced Voc and Jsc values.

Lactic Acid Volume Lactate Concentration Voc (mV) Jsc (mA·cm−2)

20 2.28 406 4.35
22 2.51 445 12.88
24 2.74 421 7.68
26 2.97 399 6.05
28 3.19 340 8.30

The best lactic acid concentration of the bath to fabricate p-n homojunction is 2.51 M.
The observed remarkable increase in the short circuit current and open circuit voltage will
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be a very significant finding useful in developing the Cu2O homojunction devices. This
photoactive enhancement of the device with a lactic acid concentration of the bath has been
further studied with the surface morphology of the p-Cu2O films. Figure 2 shows the SEMs
of the p-Cu2O films deposited on n-Cu2O films in a bath of (a) lactic acid concentration of
3 M and (b) lactic acid concentration of 2.51 M. A significant difference in the morphology of
the films is evident in SEM images. The obvious difference between the two homojunction
cells that can lead to the observed performance difference appears to be the large grain size
in the film deposited with a lactic acid concentration of 2.51 M.
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The surface modification of p-Cu2O thin films by exposing them to ammonium sulfide
is a crucial step in the fabrication of Cu2O homojunction devices. Therefore, sulfidation
conditions were carefully re-examined. Table 4 shows the photoactive performance of the
devices with different (NH4)2S exposure durations. As observed, the best photoactivity
was exhibited with the exposure of (NH4)2S vapor for a duration of 8 s. To study the
dependence of growth conditions of the front contacts, thin Au spots on the sulfided
p-Cu2O thin films were grown by changing the sputtering current and the duration. The
photoactive performance of the devices revealed that the best sputtering conditions were
20 mA for 120 s.

Table 4. Voc and Jsc values of devices with different exposure durations of (NH4)2S vapor on p-Cu2O
film surfaces.

Time (s) 5 6 7 8 9 10

Voc (mV) 372 384 396 445 321 292
Jsc (mA·cm−2) 2.4 2.5 6.4 12.8 11.3 10.6

Photoactive enhancement of the homojunction annealing in air was studied and Table 5
shows the photoactive performance of the device annealed at different temperatures for
30 min in air. Results revealed that the best annealing condition was 175 ◦C for 30 min.

Table 5. Voc and Jsc of the samples were annealed for 30 min under different temperatures.

Annealed Temperature (◦C) Voc (mV) Jsc (mA·cm−2)

None 330 6.07
125 351 6.21
150 375 12.64
175 445 12.60
200 438 5.83
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To maximize the generation and collection of photocarriers at the homojunction,
it is very important to optimize the film thicknesses of the n- and p-type layers. For
this, to estimate the film thicknesses of the layers, the total charge passed during the
electrodeposition was measured. Two sets of devices were fabricated by changing the
n-Cu2O and p-Cu2O deposition durations separately. Tables 6 and 7 show the photoactive
performances of the devices with different n-Cu2O and p-Cu2O deposition durations
(different film thicknesses). Results revealed that optimum n-Cu2O and p-Cu2O film
thicknesses were 1.45 µm and 0.80 µm, respectively.

Table 6. Voc and Jsc values of devices made with different n-Cu2O layer thicknesses.

Time (minutes) Charge (C) Thickness (µm) Voc (mV) Jsc (mA·cm−2)

20 1.297 1.07 406 9.72
30 1.764 1.45 447 12.90
40 2.187 1.80 414 12.04
50 2.576 2.12 300 5.95
60 2.936 2.42 272 5.08

Table 7. Jsc and Voc values of the devices with different p-Cu2O layer thicknesses.

Time (minutes) Charge (C) Thickness (µm) Voc (mV) Jsc (mA·cm−2)

30 0.739 0.609 290 3.58
35 0.846 0.697 305 4.05
40 0.971 0.800 460 12.99
45 1.053 0.868 447 9.89
50 1.147 0.945 409 6.68

Structural information of n-Cu2O and p-Cu2O were studied using HEXRD measure-
ments. Figure 3 shows the HEXRD spectra of electrodeposited n-Cu2O and p-Cu2O in
acetate and lactate baths deposited using the optimum growth conditions stated above.
The HEXRD spectra of n-Cu2O and p-Cu2O show analogous orientations with nine peaks
corresponding to the reflections from (110), (111), (200), (220), (310), (311), (222), (321) and
(400) atomic planes of Cu2O. Additionally, HEXRD reveals a faint peak at 6.64◦ attributed to
the (211) reflection of CuO indicating that the surface of Cu2O interacts with air leading to
the formation of CuO. Furthermore, structural information can be extracted from HEXRD
by converting polarization, absorption and background-corrected data into total structure
factor, S(Q) and radial distribution functions (RDF) using Fourier transform S(Q) [49].
Figure 3c displays the RDF spectra of n Cu2O (black) and p Cu2O (red), showing similar
RDF distributions with identical peak positions for both types. The first and second peaks
in Figure 3c indicate that the Cu-O and Cu-Cu correlations are 1.87 Å and 3.04 Å, respec-
tively. The correlation agrees with the Cu-O (1.849 Å) and Cu-Cu (3.012 Å) correlations
found in standard Cu2O powder [50].

The HAXPES spectra of n-Cu2O prepared at pH 5.8 (black) in Figure 4a show that the
binding energies of the Cu 2p1/2 and Cu 2p3/2 are 953.1 and 933.1 eV, respectively, which
are consistent with the binding energy values for Cu(I) reported in the literature as 952.5
and 932.18 eV. A weak spike was observed at 947.3 indicating the slight oxidation of Cu(I)
to Cu(II) possibly present on the surface forming CuO [51]. It could be due to the surface
oxidation of Cu2O while sample handling in air.

The XPS spectra of the p-Cu2O prepared at pH 13 (red line) in Figure 4a have slightly
shifted to the left, showing peaks for Cu 2p1/2 and Cu 2p3/2 at 951.8 and 931.8 eV binding
energies, respectively, which are also consistent with the Cu (I) oxidation state.
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As shown in Figure 4b, the O1s core-level spectrum is broad, with a peak at 531.0 eV
for n-Cu2O and a peak at 530.7 eV for p-Cu2O, which are consistent with the values in the
literature for Cu2O. Additionally, the O1s spectrum of p-Cu2O shows a broad shoulder peak
at 531.7 eV. This is typically indicative of oxygen species that are different from the lattice
oxygen of the Cu2O structure. Adsorbed hydroxyl groups/water molecules on the surface
of Cu2O can give rise to a broad peak in the O 1s spectrum around 531.5–532.5 eV [52].
These hydroxyl groups could be a result of exposure to ambient moisture.

A slight increase in the binding energies of n-type Cu2O compared to p-type Cu2O
could be due to the increased electron density in the conduction band of n-type Cu2O. These
electrons are in a relatively stable and low-energy state, causing a higher binding energy.

The HAXPES analysis is consistent with the XRD results, further confirming that Cu2O
has been successfully synthesized.

Light-generated J-V characteristics of the Cu2O homojunctions solar cells are given in
Figure 5 for the control sample and the cell fabricated with fine-tuning the conditions. It is
important to notice that when comparing with the Voc of 324 mV, Jsc of 12.67 mA·cm−2,
FF of 30.7% and η = 1.3% of the control sample, the performance of the fine-tuned Cu2O
homojunction solar cell has significantly increased to Voc of 460 mV, Jsc of 12.99 mA·cm−2,
FF of 42% and η = 2.51%. Still, it is evident in Figure 5, J-V characteristics should be further
improved because the poor fill factor contributes primarily to the low-efficiency value.
High series resistance and low shunt resistance have contributed to this result and need
to be improved. Although the efficiency of the Cu2O homojunction solar cell is limited
to 2.51%, the remarkably high Jsc is encouraging. This short circuit current density, to
our knowledge, is the highest reported value for an electrodeposited Cu2O homojunction
device. This device may be readily applicable in large-area optical device applications
where short circuit current density will be a primary objective, such as in optical sensors.
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Spectral responses of the control sample and the best device are shown in Figure 6.
The spectral response curves of both devices were almost the same except for a slight
increase in the photocurrent in the short wavelength region of 500 nm to 550 nm of the
device fabricated with fine-tuning.
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4. Conclusions

In this study, the possibility of improving the efficiency of the Cu2O homojunction solar
cell was investigated by fine-tuning the Cu2O homojunction fabrication conditions. We
have demonstrated the possibility of enhancing the efficiency of the Cu2O homojunction
solar cell with a high short circuit current density by fine-tuning the n-Cu2O growth
parameters in the acetate bath and p-Cu2O growth parameters in the lactate bath. The
best photoresponse was produced by a Cu2O homojunction solar cell when 1.45 µm thin
n-Cu2O film was grown using a bath containing 0.1 M sodium acetate and 0.01 M cupric
acetate solution at the pH of 5.8 and 0.8 µm thin p-Cu2O was grown using a bath containing
2.51 M lactic acid, 0.4 M cupric sulfate and 4 M NaOH solution at the pH of 13. As revealed
by the photocurrent density voltage measurements, the device exhibits the highest reported
short circuit current density for an electrodeposited Cu2O homojunction solar cell. The
homojunction solar cell structure of Ti/n-Cu2O/p-Cu2O/Au produced Voc of 460 mV, Jsc of
12.99 mA·cm−2, FF of 42% and η = 2.51% under AM 1.5 artificial illumination. Although
the overall power conversion efficiency of the device is on the lower side, as a large area
optical device, this device has potential applications. Major limitations of the device that
have been able to produce in this study are the low fill factor and Voc values.
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