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Abstract: Halfway through Transforming Our World: The 2030 Agenda for Sustainable Development,
only 15 percent of the goals have been reached. As a carbon storage and climate change mitigation
mechanism, blue carbon is closely related to sustainable development goals and plays an important
role in the global carbon cycle. In spite of its great potential, blue carbon still faces several challenges in
terms of achieving the Sustainable Development Goals. Herein, this review aims to retrieve all known
impacts of blue carbon on sustainable development through research published on the Web of Science
from 2012 to 2023 using a sequence of bibliometric analyses. Keywords such as “blue carbon” and
“sustain*” (including “sustainability”, “sustainable”, etc.) were used for article extraction. CiteSpace,
a science mapping tool, was used to capture and visually present the bibliometric information
in the research about blue carbon and sustainable development. Upon reviewing the existing
literature, no study has concentrated on bibliometrically analyzing and visualizing studies about
blue carbon and sustainable development. This study sets out to fill this gap by examining the key
areas of concentration in published works on blue carbon and sustainable development from 2012 to
date. Moreover, the integration of blue carbon and sustainable development may help to develop
supportive policies for marine carbon sinks. Despite the valuable contribution of this study to the
blue carbon and sustainable development body of knowledge, generalizations of the results must be
made cautiously due to the use of a single database, which in this case is the Web of Science.

Keywords: blue carbon; sustainable development; CiteSpace; bibliometric analyses; climate change

1. Introduction

In 2015, the United Nations General Assembly adopted a global agenda, Transforming
Our World: The 2030 Agenda for Sustainable Development (hereinafter referred to as the 2030
Agenda), which is intended to “make the world a better place by 2030” [1,2]. It consists
of 17 Sustainable Development Goals (SDGs) and 169 concrete targets related to poverty
eradication, food security, health, education, gender equality, clean water resources, climate
action, etc. [3–5]. By the second half of 2023, the road to sustainable development by 2030
still faces considerable challenges [6,7]. According to the latest data, only 15% of targets are
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progressing according to plan, while 48% show moderate or severe deviations from the
planned path, and the most concerning fact is that 37% of targets experienced stagnation
or regression [8,9]. There is an urgent need to accelerate, sustain, and transform the SDGs
over the next few years to create a more peaceful, prosperous, and secure future for all [6].

Adopting the 2030 Agenda for Sustainable Development requires balancing sustain-
able growth with the fight against climate change [10]. A close connection exists between
blue carbon and sustainable development goals. The concept of blue carbon refers to a
process, activity, and mechanism uses for ocean activities and marine organisms to absorb
and fix CO2 from the atmosphere or as the biologically−driven carbon flux and storage
in marine systems amenable to management [11–13]. Considering the current global chal-
lenge of increasingly severe climate change [14], integrating blue carbon with the SDGs is
particularly important. As part of the SDGs, the importance of marine conservation and
marine ecosystems has been highlighted, and blue carbon, as an important component of
marine ecosystems, has been incorporated into the sustainable development agenda [15–17].
Protecting blue carbon ecosystems supports SDG 14 (Conserve and sustainably use oceans,
seas, and marine resources for sustainable development) and further supports other SDGs
(see Figure 1). As part of achieving the SDGs, the preservation and restoration of blue
carbon ecosystems are important to ensure the long-term sustainability of the planet.
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Figure 1. The supporting role of SDG 14 for other goals [18–45] (Source: analysis and summary by
the authors).

SDG 14 focuses on conserving and sustainably using the oceans, seas, and marine
resources, including reducing marine pollution, protecting ecosystems, minimizing ocean
acidification, and so forth [46]. Despite the boom in academic research on blue carbon, the
theoretical vacuum between blue carbon and the SDGs is still unclear. A notable example
of this can be seen in the marginalization of SDG 14’s implementation. SDG 14 is yet
marginalized in global policies, including those within the United Nations system [47].
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Global funding allocations for SDG 14 are significantly lower than those for other SDGs,
according to the Global Sustainable Development Report 2023 [48]. It is worth noting that four
objectives of the SDG 14 concerning marine conservation and management expired in 2020,
yet the relevant indicators show that most countries have made very limited progress in
this regard [48]. In light of these challenges, countries need to examine ways to improve
marine conservation and management to fulfil SDG 14.

It is estimated that approximately 11.5 billion tons of carbon are sequestered from the
atmosphere through blue carbon habitats [49]. Blue carbon and its implementation should
provide a potential contribution to implement SDG 14. Thus, the aim of this study is to
summarize the current stage of the study on blue carbon and sustainable development
through a systematic analysis and visualization of the relevant literature. Additionally, the
study will place a particular focus on the main findings of current literatures identifying
the gap between theory and practice in adaptation SDGs in blue carbon.

This study is divided into four sections: introduction, data and methodology, results
and discussion, and conclusions. First, we explain the background and purpose of the
study. Second, the Web of Science (WoS) was chosen for literature databases with keyword
searches; we screened out literature samples related to blue carbon and sustainable devel-
opment, and classified and analyzed these samples. Third, we used the visualization tool
CiteSpace to conduct in–depth analyses and visual presentations of collaboration networks
among institutions, countries, authors, as well as citation networks in order to provide a
comprehensive picture of the study landscape and relationships. The final section summa-
rizes the major findings and conclusions of the study and highlights the future research
for blue carbon and sustainable development. We also present a recommendation of this
study for academics and practitioners, with important references for the future direction of
the field.

2. Materials and Methodology
2.1. Research Methods

This study aims to review and analyze the links between blue carbon and sustainable
development so as to gain a comprehensive understanding of the current stage of the study
in this area. CiteSpace software (6.3.R1 Advanced (2024–2025), https://citespace.podia.
com/, accessed on 19 December 2023; it is a Java–based visualization tool developed for
capturing and visually presenting the bibliometric information of scientific publications)
was used to conduct a comprehensive and in–depth analysis of the literature [50,51]. In
this section, we describe the research methods and tools used in this study.

Firstly, we selected the WoS as our data source since it is widely used [52–60]. To obtain
scholarly publications related to blue carbon and sustainable development, detailed search
strings based on the specific objectives and content of this study have been developed and
applied to the selected databases. The relevant inclusion and exclusion criteria were used
as a filter to obtain data sets that met the study’s objective to ensure the completeness and
accuracy of the literature search. Then, the data were examined using the bibliometric tool
CiteSpace software. As part of the automated cluster identification feature of CiteSpace
software, the article used the setting Extract Cluster Labels = Keywords and displayed clus-
ter labels using the log–likelihood ratio (LLR). The time period was set to 2012.01–2023.12
(Years Per Slice = 1), and other factors were maintained at their default settings. CiteSpace
uses visualization tools such as network diagrams, timelines, and keyword co–occurrence
analysis to provide researchers with insights into citation relationships between scientific
literature, topic evolution, and hotspots of research [55,61]. Thirdly, we conducted an
in–depth analysis of the literature related to blue carbon and sustainable development and
generated visualization charts and results. The possible research gaps or future develop-
ment paths are identifiable and will provide scientists with scientific support and guidance,
all while enabling them to gain a thorough grasp of the research study’s advancement in
this field.

https://citespace.podia.com/
https://citespace.podia.com/
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2.2. Materials and Data Collection

It is imperative that academic databases are utilized for academic research, and sev-
eral databases are available to researchers, including Scopus, WoS, Google Scholar, etc.,
which provide literature and citation information for various disciplines [62]. Selecting
an appropriate database for conducting a review study requires consideration of a wide
range of factors [62,63]. Because the study is a review study and the research topic is “Blue
Carbon and Sustainable Development”, which is an interdisciplinary topic, we used the
WoS database to collect research materials. The WoS database was chosen because it pro-
vides journal articles, conference papers, and patents in a wide range of disciplines [52,63].
Research results in the database are derived from high–quality academic journals, ensuring
that researchers have access to reliable and authoritative data [63].

The selected WoS databases were thoroughly searched, extracted, and screened. Due to
our focus on peer–reviewed scholarly output, we only consider journal articles, excluding
books, book chapters, conference papers, and theses published between 2012 and 2023.
Firstly, we entered TS = (“blue carbon”) AND AB = (sustain*) into the search bar, and 206
results were returned. To ensure the completeness and accuracy of the literature required
for the review study, the following are required: typing TS = (“blue carbon”) OR TI = (“blue
carbon”) in the search bar, 1933 documents were obtained, and then typing SUSTAIN* in
the result list yielded 226 results. Finally, after filtering out 36 documents (non–journal,
irrelevant, and non–English), we obtained 190 valid documents (see Figure 2).
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3. Bibliometric Results, Data Analysis, Visualization, and Discussion
3.1. Exploring Research Landscape

An important method for analyzing the status and trend of a research topic over time
is to analyze the time–series distribution of the literature [64]. Research in a particular
field can be assessed based on the number of papers that have been published, which can
be a comprehensive indicator of the level of attention that researchers have paid to that
field [65]. Research publications can provide insight to a field’s overall level, trend, speed,
and stage of development as well as reflect the research priorities of researchers at different
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points in time [66,67]. The statistical analysis of the number of papers published every year
allows us to identify the current research status of the field and predict the future research
prospects [68]. Figure 3 shows the temporal distribution of the number of papers, based on
annual statistics. According to the characteristics of the annual publication, the research
in this field is divided into two stages: embryonic stage (2012–2018) and development
stage (2019–2023).
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3.1.1. Stage I: Embryonic Stage (2012–2018)

Between 2012 and 2018, we can observe a slow development of the research field. This
stage is characterized by the growth in publications each year, but the rate of growth is
relatively slow, indicating that the research field has not yet matured and is still exploring
its research directions and establishing its research foundations. Blue Carbon: The Role of
Healthy Oceans in Binding Carbon, published by the United Nations Environment Programme
(UNEP) in 2009, has received significant attention [12]. It presented new ideas for reducing
carbon emissions and stimulated discussions regarding ocean–based CO2 removal. From
2012 to 2015, the focus of the research is on determining the role that coastal ecosystems
such as seagrass and mangroves play in carbon sequestration and conservation [69–74].
Moreover, the concept of blue carbon is a recurring theme, emphasizing the importance of
carbon storage in these ecosystems for mitigating climate change [69–76]. From 2016 to 2018,
due to the 2030 Agenda and the Paris Agreement, research has been primarily focused on
examining how blue carbon relates to the SDGs [77], as well as how to translate blue carbon
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into practical policies and actions [78–80]. The 2030 Agenda integrates the three dimensions
of sustainable development (economic, social, and environmental) and emphasizes the
importance of protecting and restoring marine ecosystems [1]. The 2030 Agenda places
particular emphasis on blue carbon, which is the capacity of marine ecosystems to absorb
and store carbon. Researchers were prompted to consider how the research on blue carbon
might contribute to the achievement of the SDGs. In 2016, the Paris Agreement entered
into force, reducing global greenhouse gas emissions and combating climate change. A key
component of this Agreement was to reintroduce marine ecosystems as sinks and reservoirs
of greenhouse gases, including blue carbon [43]. A growing number of researchers have
begun to examine the role of marine ecosystems in sequestering carbon and the potential
contribution of blue carbon in addressing climate change and sustainable development.

3.1.2. Stage II: Development Stage (2019–2023)

In this stage, the number of publications is significantly higher than in previous years,
with the exception of 2020, when it is comparatively low. A possible explanation for the
anomaly observed in 2020 is the worldwide spread of the COVID-19 pandemic. A number
of factors caused research output to decline during that period, including the closure of
laboratories, the restriction of personnel movement, diminished funding, and a variety
of other factors [81–83]. Blue carbon’s relationship with sustainable development was
studied by both academics and policy makers. According to the Intergovernmental Panel
on Climate Change (IPCC) report, while advances have been made on certain fronts, such
as the use of zero–carbon technologies to mitigate climate change [6], terrestrial carbon
sinks are currently saturated, and terrestrial carbon sequestration is not permanent [84].
Humans must therefore search for new carbon sinks outside of terrestrial carbon sinks for
growth. The international community has recognized blue carbon as an important means of
achieving “carbon neutrality [85]”. Research on blue carbon and sustainable development
is becoming an important foundation for policy–making and practice to meet the SDGs
target. The growth trend reflects researchers’ continued interest and focus in this field.
Generally, research activities in this field are moving towards a more in–depth direction.

3.2. Analyzing Global Collaborative Networks in Research
3.2.1. Global Cooperation of Institutional Research

In accordance with the contents of the original software infrastructure, the node type
was set as “Institution” and generated the institutional cooperation network (see Figure 4).
This network seeks to represent institutions’ research status and close collaboration by
leveraging collaborative relationships. The collaborative network map enables us to gain a
clear understanding of the academic output and the relationship between these institutions.

As shown in Figure 4a, universities are dominant in this field of research. In particular,
the University of Queensland and the National University of Singapore have performed
well. They are able to engage in deeper research because of university research facilities,
extensive research resources, and highly qualified researchers. However, the involvement
of non–university institutions, such as the Center for International Forestry Research,
may facilitate cross–collaboration between different areas of expertise. As a result of this
diversity, interdisciplinary research and cross–sector collaboration are fostered, enabling
new perspectives and solutions to be developed for complex problems. Figure 4b shows
that institutions with a high degree of cooperation are generally clustered in clusters #0, #1,
and #3. Clearly, these clusters are at the core of the institutional collaboration network, and
their members closely cooperate and form a strong sub–network.

Based on the clustering information provided in Table 1, a number of representative
keywords for cluster #0, including “map of worlds”, “Falkland Islands”, “sub–Antarctic”,
“land–ocean carbon”, and “climate change mitigation”, indicate that the research focus
covers geographical mapping, regional studies of the Falkland Islands and sub–Antarctic
regions, as well as carbon exchange dynamics between terrestrial and marine ecosystems.
A major focus of this cluster is likely to be the development of strategies and mechanisms
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for mitigating climate change, especially in relation to carbon sequestration and storage in
coastal and marine environments. It is evident from the inclusion of the label “land–ocean
carbon” that there is interest in developing a better understanding of how the carbon cycle
operates across different ecosystems and how these systems interact to influence global
carbon budgets. “Climate change mitigation” indicates the cluster focuses on reducing
greenhouse gas emissions and improving carbon sinks, which are crucial to resolving the
global climate crisis. As indicated by the label “macroalgae”, Cluster #1 focuses on the
importance of large marine algae to coastal ecosystems, especially mangroves. “REDD”
is the representative label for Cluster #3, which emphasizes the role played by coastal
ecosystems in sequestering carbon and mitigating climate change.
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Table 1. Clustering information of institutional cooperation networks (Source: CiteSpace and the
authors’ research).

Cluster ID Size Silhouette Label (LLR) Mean (Year)

0 23 0.952
map of worlds (3.52, 0.1); Falkland Islands (3.52, 0.1);

sub–Antarctic (3.52, 0.1); land–ocean carbon (3.52, 0.1);
climate change mitigation (3.52, 0.1)

2020

1 21 0.933
macroalgae (6.82, 0.01); conservation (3.39, 0.1);

posidonia oceanica (3.38, 0.1); biogeochemical cycles
(3.38, 0.1); coastal systems (3.38, 0.1)

2018

3 16 0.989 REDD (4.65, 0.05); seaweeds (2.83, 0.1); MPA (2.83, 0.1);
Payments for Ecosystem Services (2.83, 0.1) 2016

Even though high levels of collaboration are concentrated within the core clusters, the
overall number of collaborations is relatively low. While the core institutions have close
collaborative relationships, the overall collaborative network is far from reaching its full
potential. Perhaps this is due to the complexity of the issues in the field, which requires
collaboration across disciplines and institutions.

3.2.2. Global Cooperation of National Research

Assessing the robustness of a nation’s research endeavors requires a thorough analysis
of its cooperation network diagram. As a result of this analytical approach, valuable
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insights into the collaborative landscape within the field of scientific exploration can be
obtained [86]. As illustrated in Figure 5, by configuring the node type as “Country” within
the original software framework, we were able to construct and visualize a comprehensive
representation of the country cooperation network. By using this visualization, we can
examine the collaborative landscape and dynamics of international research cooperation.
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Observing the interconnections between major countries and discerning the relative
size of the nodes within the graph provides a nuanced understanding of the depth and
breadth of scientific research cooperation. Figure 5a illustrates clusters within the network
as a result of varying node colors. While nodes are sized according to the number of
publications, the larger the node, the greater the number of publications. This provides a
clear understanding of the magnitude of research output across countries. Figure 5b shows
that 17 countries have contributed more than five publications with authors from different
countries. There are 41 publications from China, 37 from the United States, 34 from the
United Kingdom, and 33 from Australia. This demonstrates the active involvement of these
nations in collaborative scientific research, indicating their importance to the advancement
of knowledge within their respective fields. Furthermore, the visualization presented in
Figure 5c delves into the geographical distribution. Compared to Europe, Africa appears to
have a relatively low level of participation in its country networks. In Africa and South
America, the number of publications falls short of 10, suggesting potential opportunities
for further collaboration and engagement.

As can be seen from Figure 5a and Table 2, the largest Cluster #0 includes UK, Indone-
sia, Malaysia, and India, with the representative label “coastal ecosystems”, indicating
that these countries are leaders in coastal ecosystem research. Cluster #1 includes USA,
Spain, and Norway, with the representative label “mangrove”, which indicates a focus on
mangrove ecosystems. In Cluster #2, China, Australia, Japan, Singapore, Canada, Germany,
and France are listed, with labels such as “heavy metals”, “marine resources”, “data inte-
gration”, “forest”, and “sea level rise”. In Cluster #3, Brazil is represented by representative
labels such as “climate variability”, “floating macroalgae”, “policy”, “carbon export”, and
“carbon management”, which reflect the collaborative priorities and objectives.

Table 2. Clustering information of national cooperation networks (Source: CiteSpace and the au-
thors’ research).

Cluster ID Size Silhouette Mean (Year) Label (LLR)

0 16 0.513 2018
coastal ecosystems (5.79, 0.05); adaptation (2.88, 0.1); UNFCCC

(2.88, 0.1); mitigation (2.88, 0.1); negative emissions
biotechnologies (2.88, 0.1)

1 16 0.767 2018 mangrove (5.19, 0.05); seagrass (3.46, 0.1); restoration (3.45, 0.1);
remote sensing (3.29, 0.1); Rhizophora (2.18, 0.5)

2 14 0.645 2019 heavy metals (2.86, 0.1); marine resources (2.86, 0.1); data
integration (2.86, 0.1); forest (2.86, 0.1); sea level rise (2.86, 0.1)

3 13 0.856 2018
climate variability (4.63, 0.05); floating macroalgae (4.63, 0.05);

policy (4.63, 0.05); carbon export (4.63, 0.05); carbon
management (4.63, 0.05)

3.3. Exploring Citation Impact
3.3.1. Co–Citation Analysis: Exploring the Impact of Literature

Citations provide a visible and traceable link between scientific publications [87]. An
analysis of literature co–citations is an important research method that can provide us with
insights into key literature and academic trends in a particular field. Identifying important
research findings and academically influential scholars can be accomplished through the
analysis of the citation relationships between the literature [88]. The results of this analysis
enable us to gain an understanding of the research field and guide the direction of our
research and decision–making [89].

Based on the original software base settings, the node type was designated as “Ref-
erence”, and we were able to generate the co–citation network (see Figure 6). In order to
identify key literature, we leveraged the co–citation network and obtained the 10 most
cited references, which we then ranked in descending order based on frequency of citations
(see Table 3).
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Table 3. The top 10 highly co–cited articles (Source: analysis and summary by the authors).

Rank Document Source Citations Year Cluster ID

1 Richards DR and Friess DA. (2016) Rates and drivers of mangrove
deforestation in Southeast Asia, 2000–2012

Proceedings of the
National Academy of the
United States of America

613 2016 1

2 Macreadie et al. (2019) The future of Blue Carbon science Nature Communications 461 2019 1

3 Bunting P et al. (2018) The Global Mangrove Watch–A New 2010
Global Baseline of Mangrove Extent Remote Sensing 359 2018 1

4 Goldberg et al. (2020) Global declines in human–driven
mangrove loss Global Change Biology 346 2020 1

5 Howard J et al. (2017) Clarifying the role of coastal and marine
systems in climate mitigation

Frontiers in Ecology and
the Environment 300 2017 4

6 Lovelock and Duarte. (2019) Dimensions of Blue Carbon and
emerging perspectives Biology Letters 208 2019 1

7
Hamilton SE and Friess DA. (2018) Global carbon stocks and

potential emissions due to mangrove deforestation from
2000 to 2012

Nature Climate Change 202 2018 10

8 Macreadie et al. (2021) Blue carbon as a natural climate solution Nature Reviews Earth
& Environment 201 2012 1

9 Wylie L et al. (2016) Keys to successful blue carbon projects:
Lessons learned from global case studies Marine Policy 183 2016 5

10
Vanderklift MA et al. (2019) Constraints and opportunities for
market-based finance for the restoration and protection of blue

carbon ecosystems
Marine Policy 82 2019 6

Table 3 indicates that five articles have citation frequencies exceeding 300. The paper
finished by Richards DR and Friess DA (2016) has a citation count of 613, examining the
rates and drivers of mangrove deforestation in Southeast Asia between 2000 and 2012
and providing significant insight into the loss of these vital ecosystems and the factors
contributing to their decline [90]. Based on Figure 6a, Macreadie et al. have made another
significant contribution to the field of research in 2019, receiving widespread attention
and citations, which indicates its enduring impact. In the article, the authors discuss blue
carbon ecosystems’ significant contribution to global carbon storage and suggest that blue
carbon can play a key role in mitigating and adapting to climate change [91]. In another
article published in 2021, Macreadie et al. evaluated the carbon storage and restoration
potential of blue carbon ecosystems at the global scale as well as their potential to reduce
global carbon emissions [92]. Figure 6b shows that 6 of the 10 most cited references belong
to Cluster #1. Cluster #1’s representative labels indicate that its members are concerned
with the critical issues of climate change mitigation, human activities’ threats to mangrove
ecosystems, and changes in mangrove coverage, all of which are crucial to preserving and
managing blue carbon.

3.3.2. Author Co–Citation Analysis: Unraveling Their Impact

The “Cited Author” node type is selected based on the basic settings of the original
software, which generates the co–citation network of authors in a given field of study (see
Figure 7). In light of the fact that the H–index is an important indicator of the impact and
productivity of researchers, we analyzed the top 10 authors with the highest co–citation
frequency and ranked them in descending order according to their H–index [93].

Table 4 presents the top 10 authors with the highest co–citation frequency with their
associated metrics, including the number of articles, the number of citations, and the H–
index. Among the top–ranked authors, Duarte CM is also ranked first in the H–index,
with approximately four times as many articles as the second–ranked author. A wide
range of his widely cited research results demonstrates the impact of his work on marine
science, ecology, and environmental protection. As a result, he has provided key insights
and solutions to global ocean issues [94]. With similar research outputs and impacts,



Sustainability 2024, 16, 2473 12 of 31

Lovelock CE and Barbier EB rank second and third, respectively. Lovelock CE is one of the
leading researchers in the field of blue carbon ecosystems with 304 publications and an
H–index of 69 [95]. With 276 publications and an H–index of 61, Barbier EB is a prominent
figure in environmental economics and sustainable development [96]. Furthermore, other
distinguished authors, including Alongi DM, Macreadie PI, and Donato DC, have also
made notable contributions to the field through their publications and H–index.
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Table 4. The top 10 highly co–cited authors (Source: analysis and summary by the authors).

Rank Author Publications in WoS Number of Citations H–index Cluster ID

1 Duarte, C.M. 1072 84,822 133 3
2 Lovelock, C.E. 304 17,718 69 0
3 Barbier, E.B. 276 20,179 61 1
4 Alongi, D.M. 133 9635 51 1
5 Macreadie, P.I. 140 4534 35 5
6 Donato, D.C. 65 6753 33 0
7 Nellemann, C. 60 2895 27 4
8 Mcleod, E. 76 4571 26 6
9 Pendleton, L. 65 2640 23 0

10 Howard, J. 23 550 6 2

The depth and breadth of the field could be further explored. Figure 7 shows that
cluster #0 has attracted a significant number of prominent authors, including Conato DC,
Lovelock CE, Pendleton L, Giri C, Friess DA, and Richards DR. A representative label of
Cluster #0 is “restoration”, which indicates that these authors are engaged in research and
scholarly contributions related to ecosystem restoration, particularly with regard to the
rehabilitation and recovery of natural environments.

3.3.3. Journal Co–Citation Analysis: Investigating Their Influence

Researchers can gain insight into the influence and status of journals in a field by
analyzing journal co–citations. Due to the creation of a journal co–citation network, the
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ability to study and explore the impact of these journals within particular disciplines is
possible. As instructed by the basic settings of the original software, the co–citation network
of journals in this field was successfully generated when the node type was set to “Cited
Journal” (see Figure 8). In order to assess their influence and status more comprehensively,
the top 10 active journals based on the number of citations are filtered, and their key indica-
tors are listed in Table 5. These journals are categorized into clusters #2 and #3, with cluster
2’s representative label being “social–ecological systems” in Figure 8b. In other words,
these journals tend to examine the dynamics and governance of coupled human–natural
systems. The representative label of cluster #3 is “ecosystem services”, suggesting that
these journals emphasize the benefits ecosystems provide to human well–being, as well as
the mechanisms by which these services are sustained and valued.
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Table 5. The top 10 most active journals (Source: analysis and summary by the authors).

Count Journal Articles Categories Impact Factor

107 PLoS ONE 2 Multidisciplinary Sciences 3.7

107 Proceedings of the National Academy of
Sciences of the United States of America 1 Multidisciplinary Sciences 11.1

103 Estuarine Coastal and Shelf Science 7 Marine & Freshwater Biology 2.8
97 Frontiers in Marine Science 13 Marine & Freshwater Biology 3.7
96 Ocean & Coastal Management 7 Oceanography 4.6
94 Nature Climage Change 1 Environmental Studies 30.7
93 Science 1 Multidisciplinary Sciences 56.9
91 Nature Geoscience 1 Geosciences; Multidisciplinary 18.3
91 Global Change Biology 3 Environmental Sciences; Ecology 11.6
89 Nature 1 Multidisciplinary Sciences 64.8

Among these journals, Nature has the highest impact factor (64.8, 2022) among the
top 10 journals [97], illustrating the journal’s importance and broad influence in the aca-
demic community [98]. Rogers et al.’s article “Wetland Carbon Storage Controlled by
Millennial–Scale Variation in Relative Sea–Level Rise” was published in 2019 and had
an important impact on blue carbon research [99]. Frontiers in Marine Science (FMS) has
published the most articles in this research field, 13 in total, despite having a relatively low
impact factor of 3.7. It is one of the leading journals in the field of marine science, making it
an ideal forum for blue carbon researchers to present their findings. A wide range of topics
are discussed in these articles, ranging from ocean carbon cycles to ecosystem health. One
article was published in 2015 [69], another in 2016 [100], one in 2019 [101], one in 2021 [102],
one in 2023 [103] and the remaining eight in 2022 [104–111]. Frontiers in Marine Science
has contributed to the field at various times, which is essential to its continued growth.
Additionally, it is important to mention that seven articles were published in two journals,
Estuarine Coastal and Shelf Science and Ocean & Coast Management, which are devoted to
the management and protection of marine and coastal ecosystems as well as providing
a research platform for blue carbon. Estuarine Coastal and Shelf Science mainly published
articles between 2019 and 2022 [112–118], while Ocean & Coast Management published one
article in 2018 [119] and some other articles between 2020 and 2022 [120–125].

The distribution of these journals in terms of subject areas are examined, and the
findings covered a wide range of fields, such as environmental sciences, marine and
freshwater biology, ecology, oceanography, etc. This diversity of disciplines reflects the
wide range of interests of academics and the high priority given to environmental and
biological studies. While natural science plays an important role in this field, collaboration
and integration between disciplines still need to be strengthened. Particularly in the social
sciences, policy research and socio–economic impact assessments have not yet received
sufficient attention.

4. Findings, Conclusions, and Future Research
4.1. Main Findings

As a result of the analysis of the selected sample of literature related to blue carbon
and sustainable development, a more comprehensive understanding of the perspectives
expressed by experts and scientists from across the globe, the following main findings can
be drawn.

4.1.1. Has Potential but Need for Filling the Field

As a result of using blue carbon to promote the achievement of SDGs, a certain con-
sensus has been reached within the research community. In 2023, 49 research papers were
published, a record high; this trend suggests that there will be more research conducted on
this topic in the future. There is a strong possibility that research regarding blue carbon
and sustainable development will continue to grow as climate change and sustainable
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development continue to gain attention [126–133]. In spite of this, academic research in this
area is in its infancy, with the amount of research being relatively small and confined to
a few specific areas of study. There are relatively few researchers in this field, and most
of them reside in a small number of regions or countries. Research participation rates are
low in regions with great maritime interests, such as Africa and South America. While the
Alliance of Small Island States (AOSIS) has actively promoted the inclusion of blue carbon
on the global climate agenda [134], it has not been an active participant in the study.

4.1.2. Currently Researched Topics

The issue of blue carbon and sustainable development is a comprehensive issue that
spans multiple disciplines and fields, including the sciences (e.g., ecology, climate science,
biology, oceanography), technology and engineering, and social sciences (e.g., policy,
management, and economics). As a result of its analysis, it can be roughly divided into
four research topics, which are as follows:

Topic I: Blue carbon plays a prominent role in ocean and climate change issues

Inextricably linked to climate, the oceans play a key role in climate change mitiga-
tion and adaptation [135–140], and blue carbon plays a potential contributing or even the
predominant role [11,55,140–151]. As part of the ongoing discussions regarding the ocean–
climate nexus and blue carbon, more attention is being paid to carbon cycling and storage
processes in the open ocean as a potential solution to climate change [107]. Maintaining
and increasing blue carbon such as Caulerpa farming is one of the most basic strategies for
combating global warming [152–154]. Due to regional warming, the northern Antarctic
Peninsula is likely to experience macroalgal expansion and blue carbon gains as a result
of glacial retreat [155]. Meanwhile, a natural methane (CH4) emission from blue carbon
ecosystems may counteract atmospheric CO2 uptake [156]. A seagrass–colonized coastline
is a net source of CH4 to the atmosphere; CH4 production is sustained by methylated
compounds created by the plant, as opposed to the fermentation of buried organic car-
bon [157]. In contrast to the short lifetime of CH4 in the atmosphere, undisturbed coastal
wetlands produce limited quantities of CH4 emissions [153,158,159]. As natural carbon
storage hotspots, blue carbon ecosystems are also at risk from global change [159–165].
As an example, the typical blue carbon ecosystem exhibits a high level of heavy metal
accumulation capacity; however, extreme rainfall can lead to a change in sediment particle
size, thereby causing heavier metal concentrations to increase towards the sea [166].

In many international organizations and countries such as Fiji, blue carbon as a carbon
mitigation strategy is incorporated into National Development Contributions (NDCs),
national management plans, etc. [11,107,167,168]. Community participation is essential
in the implementation process as the blue carbon ecosystem is deeply woven into the
need for NDCs [169]. In fact, key issues involved the reliance of blue carbon measures on
slowing sea level rise as well as restoration efforts [11]. In particular, coastal wetlands are
dependent on the interaction between human impacts and sea–level rise to survive [158].
In addition to providing climate change mitigation benefits, MPAs in different places can
also contribute to the preservation and enhancement of blue carbon pools [170].

Topic II: Blue carbon ecosystem assessment and sustainable management

Seagrasses (dead seagrass, seagrass beds, seagrass meadows), mangroves, coral reefs,
kelps, saltmarshes, macroalgae (or seaweeds), benthic microalgae, etc., constitute the blue
carbon ecosystem, whose comprehensive benefit is also determined by the size, quality,
and extent of the ecosystem [69,71,76,104,110,124,135,136,161,164,165,168,170–184]. Due to
the structural complexity of coastal vegetation ecosystems (root systems, dense vegetation,
and leafy canopy in seagrass systems), salt marshes, mangroves, and seagrass beds are
capable of efficiently capturing sediment and associated organic carbon from both river-
ine and oceanic sources [164]. Among these, coastal wetlands (mangrove, tidal marsh and
seagrass) sustain the highest rates of carbon sequestration per unit area of all natural sys-
tems, primarily because of their comparatively high productivity and preservation of or-
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ganic carbon within sedimentary substrates [99,158,159]. However, blue carbon ecosystems
have been severely depleted in the last 50 years, primarily as a result of human activi-
ties [72,78,101,162]. Of course, human activities like human–made structures can also enhance
the biogeochemical sink capacity [185]. Consequently, it is necessary to conduct qualitative
and quantitative assessments of the blue carbon ecosystem’s components, carbon storage,
carbon cycling, carbon sequestration, monitoring, and potential risks under different condi-
tions [10,72,100,110,112,114,116–119,123,141,145,146,149,151,160,164,167,172,174,175,186–228].

Generally, the capacity of coastal ecosystems to sequester blue carbon per unit area
is greater than that of terrestrial and ocean ecosystems [13]. A mangrove ecosystem with
a low freshwater demand, for example, is recognized for providing valuable ecosystem
services as well as having the highest carbon content of any forest ecosystem [74,229].
The ecosystem functions of restored mangroves are higher than unrestored degraded
mangroves, but are lower than that of natural mangrove groves [113,188,230].

Carbon sinks can be increased through the efficient carbon sequestration of blue carbon
ecosystems [231]. A main benefit of microalgae is their ability to sequester carbon and
produce biomass without the need for arable land [152]. It may be possible to increase blue
carbon by reducing the use of chemical fertilizers on land in order to promote microbial
carbon sequestration in marine ecosystems [232]. Although invasive species (Phragmites
australis, Sporobolus alterniflora) are probably harmful, soils provide an effective carbon
sink [233–235]. Furthermore, the Abu Dhabi Blue Carbon Demonstration Project indicates
that coastal ecosystems provide numerous additional environmental benefits, including
habitat for sea turtles and dugongs, stabilization of shorelines, fish production, and water
quality maintenance [236].

As a result of technological advancements, we discovered that blue carbon consists
not only of shellfish and macroalgae but also the carbon transformed by microbes, dis-
solved organic carbon, and sedimentary particulate carbon [164,237]. Habitat (distribution)
maps are increasingly being created to account for blue carbon using remote sensing
data, acoustic methods, species distribution models (SDMs), and machine learning algo-
rithms [74,104,142,151,164,175,179,187,238–244]. By using satellite images and biological
data, we are mapping the percent seagrass cover (SPC), the above–ground biomass (AGB)
and the below-ground biomass (BGB) on islands to monitor temporal changes in the distri-
bution of seagrass meadows [245]. It is possible to trace the carbon flows in blue carbon
ecosystems using ecological network analysis (ENA) as total coastal carbon flows were
many times greater than terrestrial ones [164,246,247]. In order to support coastal and small
island zonation planning, conservation prioritization, and marine fisheries enhancement,
multi-source spatial datasets can be used to map the climatic and human pressures on
blue carbon ecosystems [205]. In order to improve soil health in blue carbon ecosystems,
biochar–based technologies must be developed [242].

In order to protect the blue carbon pool and formulate a sustainable management plan,
incorporating REDD+ (Reducing Emissions from Deforestation and Forest Degradation
Plus) will play an important role and is the ultimate objective of developing blue carbon
policies [71,140,248]. The ability to quantify carbon accumulation in sediments is a useful
tool for estimating the amount of carbon stored in mangrove ecosystems, which is a
precondition for the implementation of REDD+ programs [117,164,228].

In Vietnam, the benefits of mangrove-aquaculture systems (MAS) are a possible
triple–win approach for communities towards sustainable development [120]. The Blue
Carbon Strategy Framework (including coordination, policy, and funding) is imperative
for Indonesia [249,250]. Local cases in the Philippines indicate that the concept of “blue
carbon” has not yet been fully integrated into management plans [251]. Despite the fact that
the drivers were not ranked based on the assessment, key respondents cited ‘institutional
capacities’ as a major factor hindering the management of blue carbon ecosystems [252]. A
crucial component of the improvement of blue carbon sinks in China’s reclamation history
districts was coastal management practices (the size of industry and population control,
balanced fertilization techniques in reclamation areas, and maintaining adequate vegetation
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cover in reserves) [147]. The fundamental drivers for reducing the total blue carbon stock
of the Sundarban, the world’s largest contiguous mangrove forest, are recurrent tropical
cyclones, soil erosion, anthropogenic pollution, and so on [253]. Plantations of iteroparous
mangrove species may provide an effective solution to these challenges [254]. Furthermore,
it is proposed that living shorelines that incorporate blue carbon ecosystems into their
design could sustain and/or increase carbon stocks and carbon sequestration capacity in
Australia [150].

Increasing the blue carbon potential of marine protected areas (MPAs) may be a key
contributor to carbon emissions reduction [139]. It will be possible to achieve substantial
gains with a small amount of coverage with MPAs on specific carbon pools [170]. The
design, location, and management of MPAs could be utilized to protect and enhance carbon
sequestration, and to ensure the integrity of carbon storage through conservation and
restoration practices [78,138]. The overall positive result may be diminished if MPAs were
established solely based on biodiversity considerations such as coral reefs [170].

Blue carbon as a new funding mechanism can be applied and developed to the sus-
tained funding for marine protected areas (MPAs); implementing many of these potential
solutions (blue bonds, debt–for–nature swaps) have some capacity requirements [111].

Topic III: Integrating sustainability into economic development

Based on an uncertainty propagation approach, 0.15–1.02 billion tons of carbon diox-
ide are released globally annually, causing economic damages of US $6–42 billion [73].
Furthermore, large marine ecosystems have the potential to contribute to the harnessing
and growth of the blue economy [145]. A carbon finance program can help to protect 20%
of the world’s mangrove forests (2.6 million hectares) [255]. By utilizing and investing blue
carbon as a source of climate finance, we are able to fill the finance gap associated with
ocean sustainability [102,140]. The sequestration of blue carbon must be quantitatively
evaluated and exchanged in order to become an economically viable product [256].

In terms of evaluation, mangrove restoration has positive benefit–cost ratios ranging
from 10.50 to 6.83 under variable discount rates [188]. The plural valuation of mangroves
may therefore be applied to sustainability initiatives [257]. The benefit transfer method is
one of the most common valuation methods, but it risks recycling old estimates without
advancing our understanding. In spite of continued use of replacement costs and improper
use of carbon prices, estimating the economic value of carbon storage and sequestration
remains a challenge [184]. In order to fund large-scale blue carbon restoration needs, tools
such as payment for ecosystem service (PES) schemes and common asset trusts (CATs) can
be used together [258]. First, we must estimate the carbon price, and then we must address
economic, social, and governance issues [142,259]. Despite increasing promotion of PES to
protect blue carbon ecosystems, biophysical stressors external to the PES site (pollution,
etc.) will affect the potential contribution of PES sites [75,260]. One of the few positive
stories for ocean acidification is that if ocean acidification results in a significant increase in
above– and below–ground biomass, this increase in sequestration capacity will be worth
between £500 and 600 billion between 2010 and 2100 [70].

At the implementation level, increasing economic sustainability can also be achieved
by applying the ecosystem services concept and framework to aquaculture, etc. [261]. The
potential for return (ROI) is a key factor in attracting more investment in rehabilitation-
oriented blue carbon [262]. Voluntary carbon markets (VCMs) are more attractive to
smaller projects due to their lower transaction costs using the blockchain technology,
etc. [69,76,79,263]. Local communities may benefit from coastal carbon offset projects, and
carbon credits can be traded on carbon markets [236]. Using the blue carbon economic
model, fuel and food may be produced from marine ecosystems by sequestering, storing,
and harvesting carbon [264]. The farming and industry of macroalgae, seaweed, etc., can
provide future energy, economic growth, and sustainable livelihoods if the interactions
between these operations and the surrounding marine ecosystems are taken into considera-
tion [264–266]. Phytomariculture of seagrass offers the advantage of producing a seedbed
and nursery for the development of blue carbon projects, such as the restoration of seagrass
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habitats [267]. In order to achieve the green and sustainable development of the carbon
industry system, the maximum removal of black carbon impact, the maximum increase of
gray carbon scale, and the maximum development of the blue carbon economy must be the
main goals [268].

However, there are a number of challenges to overcome. In spite of the fact that
ecosystems are excellent carbon reservoirs, blue carbon is marginalized on global markets
for several reasons [80]. Very few operational blue carbon sites have been identified [121].
In Vietnam, financial incentives have contributed to the planting of more mangroves, but
their effectiveness has been limited by conflicting national policies (such as the expansion of
aquaculture in mangrove areas) [269]. Few blue carbon credit projects are operational due
to low credit–buyer incentives, uncertainty regarding the amount of emissions reductions
that can be credited, and high project costs [262]. Local residents have not combined their
perceptions of tourism and blue carbon ecosystems [270].

Topic IV: Blue carbon policy and international cooperation

Blue carbon policies are continuously evolving in related countries. Blue carbon poli-
cies in China have shifted from protecting ecosystems to increasing stocks, and the policy
approach has evolved from simple protection to a comprehensive approach [271]. Due
to the government’s revocation of the mangrove protection act, Brazil’s mangroves are
no longer protected permanently, which will likely result in increased loss rates in the
future [272]. It is possible for policy subsidies from the government to encourage the carbon
trading platform to cooperate and improve their carbon sequestration capacity; however, if
the subsidies are too high, the system will not have an evolutionarily stable strategy [273].
The balance is constantly shifting in policy. Coastal ecosystems are managed by policies and
decision–makers that integrate physical, ecological, and social factors; natural threats and
lack of law enforcement were the primary factors contributing to mangrove forest degrada-
tion in the Philippines, posing a fundamental disadvantage for local people [274–276]. It
is essential to investigate stakeholder preferences, especially those related to livelihoods,
in order to ensure the sustainable development and conservation of blue carbon ecosys-
tems [79,277]. As a result of various environmental and social constraints, the effective
implementation of regulations and guidelines regarding sustainable aquaculture practices
in Indonesia remains a challenge [122]. For the fisheries policy to be a more effective one,
the maximum carbon sequestration must be incorporated into fisheries management, rather
than only focusing on Maximum Sustainable Yield (MSY) [109]. By conserving large fish
species preferentially, fisheries management can increase overall carbon storage in the fish
community while balancing several SDGs [278].

To determine the best eco–site, a spatially explicit, integrative, and culturally rele-
vant site selection process is necessary, with blue carbon storage value being assigned
the greatest weight [108]. Natural–based solutions and ecosystem–based approaches are
good policy options [279,280]. In detail, blue carbon can be integrated into national Ma-
rine Spatial Planning (MSP) as a conservation management tool in the proposed spatial
planning laws [106,163]. MSPs that address ocean climate change (‘climate-smart MSPs’)
may find that ocean climate change modelling is a key decision–support tool [281]. The
primary proximate drivers of coastal aquaculture expansion were identified as aquaculture
development and economic opportunities, whereas factors relating to institutional policies
played a lesser role [125]. Government policy interventions should be prioritized to increase
the expansion of sustainable coastal aquaculture and mangrove conservation [125].

As most places where blue carbon occurs are managed under common–property or
open–access regimes, the impacts of blue carbon projects will be highly dependent on
how they address property rights [76]. Furthermore, as part of the UNFCCC process, blue
carbon sequestration may serve as a governance niche [139]. Conserving and restoring blue
carbon ecosystems overlap with protected area management, which are overseen through
the Convention on Biological Diversity and the Antarctic regime complex for the Southern
Ocean [140]. However, there is a limited number of empirical values generated by these
studies [183], especially in terms of policy perspectives.
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In light of the evaluation of the blue carbon development index (BCDI), global cooper-
ation could contribute to improving the global average BCDI score and sequestering carbon
dioxide [282]. The establishment of a blue carbon co–operation and trading mechanism
with other countries would enhance the implementation of global fishery resources and
extend the industrial chain [283]. A source of future international support for blue carbon–
rich countries is institutional recognition [140]. The Australian Government announced the
establishment of an international partnership for blue carbon in 2015 [77]. Despite the lack
of formal recognition within the climate process, communities of practitioners have served
as networked constituencies (such as the Blue Carbon Partnership) [140]. An economic
model of blue carbon international cooperation proves the economic feasibility of blue
carbon cooperation [256]. There is a high likelihood that not all countries will participate
in blue carbon international cooperation, but sub–alliance groups of multiple countries
should be considered [256].

4.2. Conclusions and Future Research
4.2.1. Conclusions

According to the IPCC report, the global carbon footprint is increasing [14]. Oceans
are estimated to remove 30% of atmospheric CO2 emissions every year, and their potential
to increase sinks is significant [284–286], contributing to the achievement of the SDGs. This
research provides a comprehensive overview of blue carbon and sustainable development.
The study explored an extensive and broad array of literature from the WoS database.
It is likely that research on blue carbon and sustainable development will continue to
grow. The key components of blue carbon and sustainable development were “counts”
and discussed [140]. The issue of blue carbon plays a significant role in oceans and cli-
mate change. In addition to the size, quality, and extent of the blue carbon ecosystem, its
comprehensive benefit is also determined by its composition. Many studies have been
conducted on the qualitative and quantitative assessment of the blue carbon ecosystem.
Many places have attempted to manage blue carbon in a sustainable manner using a variety
of technologies. Investing in blue carbon as a source of climate finance enables us to bridge
the funding gap associated with ocean sustainability and meet stakeholder needs [107].
It is essential to estimate the correct carbon price in order to integrate sustainability into
economic development, followed by addressing social, policy, and governance concerns.
There is a continuous evolution of blue carbon policies in related countries, and interna-
tional cooperation is in the process of being implemented. In this review, it was discovered
that there is no coordinated, systemic approach to assessment, blue carbon sink capacity
remains limited, and insufficient policy support hinders the development of blue carbon
and sustainable development [287].

4.2.2. Future Research

There is a need for future research on blue carbon and sustainable development to
focus on the following areas: (1) Blue carbon research should be balanced among different
types. The current push to measure and offset blue carbon has focused on coastal regions
to date [107,232]. Different types of blue carbon have different potentials. In addition to
coastal blue carbon, other types of blue carbon should receive more attention, particularly
from a scientific perspective [101]; (2) A greater emphasis should be placed on distributional
equity. Rather than considering distributional equity, blue carbon currently focuses more
on technological innovation, ecological sustainability, and economic viability [121]. A great
deal of potential exists for blue carbon, but there are very few specific sites, and the majority
are based on protected blue carbon ecosystems, such as mangroves. The policies and
regulations that address the needs of coastal communities and advance social equity are far
from what is expected [121]; (3) Incorporating blue carbon into the marine industries by
developing a blue carbon strategy. If future oceans are to contribute more widely to human
well–being [121], further research is required in order to bring blue carbon resources into
carbon markets [232,248,288]. The coastal blue carbon projects around the world serve as a
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testing ground for new ideas, methodologies, and funding mechanisms [79]. When blue
carbon is incorporated into the process of developing the marine industry [136,166,289],
it can provide solutions to some of the current challenges, such as a lack of carbon sites
and a lack of funds. By developing the mariculture industry, for example, increasing the
application scenarios for blue carbon, we can achieve the goal of increasing carbon sinks;
(4) Blue carbon policies should be developed and coordinated at the regional level. Despite
the fact that blue carbon policies are in place in many countries, cooperation and interaction
among countries are very limited. However, if it is agreed that blue carbon is the key to
achieving carbon neutrality in the future, regional coordination through sub–alliances of
multiple nations is an important initiative. Standards, regional planning, and other forms
can be used to promote regional blue carbon policies that integrate science, practice, and
policy around the world. As a result, a new conceptual model for blue carbon is likely to be
created [290].
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