RARE

OSCILLATORY SOLUTIONS OF FUNCTIONAL DIFFERENTIAL EQUATIONS

(THE ADVANCED TYPE EQUATION)

BY

Mrs. K.A.I.M. KUMARAPELI B.Sc. (KELANIYA)

THESIS SUBMITTED FOR THE DEGREE OF MASTER OF PHILOSOPHY IN MATHEMATICS

July, 2002

DEPARTMENT OF MATHEMATICS UNIVERSITY OF KELANIYA SRI LANKA

සුවේග අංකය	282
වගි අංකය	1000

ABSTRACT

This work is in the main relevant to the second order advanced type functional differential equation.

That is

$$t\in\left[t_{0},\infty\right)\,,\ t_{0}>o.$$

 p_{ij} , τ_i 's are real constants,

where $\tau_i > 0$, $\tau_i < \tau_{i+1}$ and p_{ij} changes sign for i,j =1...n.

The associated characteristic equation is

$$h(\lambda) \equiv \lambda^2 + \sum_{i=0}^n \sum_{j=0}^n p_{ij} e^{\lambda(r_i + r_j)} = 0 \qquad \qquad ---- (B)$$
$$i \le j$$

Theorem

The solutions of the equation (A) are oscillatory, if and only if, the characteristic equation (B) has no real roots.