Sulphurisation of sequentially electrodeposited Cu-In alloy for the preparation of semiconductor thin films

RP Wijesundara, W. Siripala, KD Jayasuriya, SRD Kalingamudali Department of Physics, University of Kelaniya, Kelaniya.

ABSTRACT

Copper indium disulphide thin films were fabricated by sulphurisation of Cu-In alloy prepared by a sequential electrodeposition method. Thin film layers of copper and indium were sequentially electrodeposited on a well-cleaned Ti substrate and on Ti/Cu thin film respectively. The Ti/Cu/In films were then heated at 130°C for 4 hours in air to form Cu-In alloy. Sulphurisation of Cu-In alloy was carried out at 550°C for 30 minutes in 100% H₂S gas with a constant flow rate. XRD measurement revealed that the chalcopyrite structure of single phase CuInS₂ can be obtained by adopting a proper In concentration in Cu-In alloy. The photoresponse of the CuInS₂ films in polysulphide showed the n-type behavior of the films. A p-type ZnSe thin film was deposited on CuInS₂ by electrodeposition to produce Ti/CuInS₂/ZnSe heterostructure. XRD measurement also revealed that the ZnSe films were amorphous. Spectral response of Ti/CuInS₂/ZnSe structure in a PEC cell containing sodium acetate showed the photoactivity of both interfaces n-CuInS₂/p-ZnSe and P-ZnSe/electrolyte. This study reveals that the thin film solar cell structure Ti/CuInS₂/ZnSe/metal may be developed to an efficient solar cell device. The solar cell parameters that we have observed so far are V_{oc}=330mV and I_{sc}=2mA/cm².

Financial assistant by the University of Kelaniya (RP/03/02/05/01/98) is gratefully acknowledged.