Use of Cu₂O microcrystalline thin film semiconductors for gas sensing

P.A. Praveen Janantha, L.N.L. Perera, K.M.D.C. Jayathilaka^b, J.K.D.S.Jayanetti, D.P.Dissanayaka^a and W.P.Siripala^b

Department of Physics, University of Colombo

a – Department of Chemistry, University of Colombo
 b – Department of Physics, University of Kelaniya

ABSTRACT

Gas sensors based on metal oxides are widely used for the detection of gases and organic vapors. Adsorption of gas molecules on the surface of a metal oxide semiconductor causes a significant change in the electrical conductivity of the material. This study was conducted to investigate the gas sensing properties of n-type microcrystalline cupreous oxide (Cu₂O) thin films, grown using electro-deposition. The variations in the resistance of thin film were observed for different gases, namely Oxygen, Nitrogen and Liquid Petroleum (LP) gas. The variations in resistance were measured with a higher resolution, for longer time durations and an analysis was conducted to find out how Cu₂O responded to these environments. Clear variations in the thin films' resistance were observed for O₂ while moderate responses were observed for LP gas. The changes in the resistance for fixed concentrations of O₂ were studied and a change in resistance of 5Ω was observed when O₂ concentration was increased from 0 to 0.311 (O₂:N₂) molar ratio in N₂ background.