4.23 A metric which represents a sphere of constant uniform density comprising electrically counterpoised dust

N.A.S.N. Wimaladharma*, Nalin de Silva Department of Mathematics, University of Kelaniya

ABSTRACT

Following the authors who have worked on this problem such Bonnor et.al^{1,2}, Wickramasuriya³ and we write the metric which represents a sphere of constant density $\rho = \frac{1}{4\pi}$, with suitable units, as

$$ds^{2} = \frac{1}{(\theta(r))^{2}} c^{2} dt^{2} - (\theta(r))^{2} (dr^{2} + r^{2} d\Omega^{2})$$

$$ds^{2} = \frac{1}{\left(D + \frac{B}{R}\right)^{2}} c^{2} dT^{2} - \left(D + \frac{B}{R}\right)^{2} (dR^{2} + R^{2} d\Omega^{2})$$

$$A < R$$

where $d\Omega^2 = \left(d\theta^2 + \sin^2\theta d\phi^2\right)$, $\theta(r)$ is the Emden function satisfying the Emden equation⁴ with n=3. Since the metric has to be Lorentzian at infinity, we can take D=1. However, there is an important difference between the above authors and us as they had taken the same coordinate r in both regions, and as a result A=a. In general these coordinates do not need to be the same. In this particular case the coefficients of $d\Omega^2$ are not of the same form in the above two metrics and that forces us to take two different coordinates r and R. In our approach r=a in the matter-filled region corresponds to R=A in the region without matter.

Applying the boundary conditions at r = a or R = A, we have,

$$\frac{1}{\theta(a)}c \, dt = \frac{1}{\left(1 + \frac{B}{A}\right)}c \, dT$$

$$\Rightarrow \frac{dt}{dT} = \frac{\theta(a)}{\left(1 + \frac{B}{A}\right)} \qquad (i)$$

$$\frac{-2}{\left(\theta(a)\right)^3}\theta'(a)c dt = \frac{-2}{\left(1 + \frac{B}{A}\right)^3}\left(-\frac{B}{A^2}\right)c dT$$

$$\Rightarrow \frac{dt}{dT} = \frac{-B(\theta(a))^3}{A^2\theta'(a)\left(1 + \frac{B}{A}\right)^3} \qquad (ii)$$

$$\theta(a)dr = \left(1 + \frac{B}{A}\right)dR \qquad \Rightarrow \frac{dr}{dR} = \frac{\left(1 + \frac{B}{A}\right)}{\theta(a)} \qquad (iii)$$

Proceedings of the Annual Research Symposium 2008 - Faculty of Graduate Studies University of Kelaniya

$$\theta(a)a = \left(1 + \frac{B}{A}\right)A$$
 _____(iv)

From (i) and (ii), we have
$$\frac{\theta(a)}{\left(1 + \frac{B}{A}\right)} = \frac{-B(\theta(a))^3}{A^2 \theta'(a) \left(1 + \frac{B}{A}\right)^3}$$

$$B = -\frac{A^2 \left(1 + \frac{B}{A}\right)^2 \theta'(a)}{(\theta(a))^2}$$
 (v)

From (iv),
$$\frac{\left(1 + \frac{B}{A}\right)}{\theta(a)} = \frac{a}{A}$$
 (vi)

Using equation (vi) in equation (v), we have $B = -A^2 \left(\frac{a^2}{A^2}\right) \theta'(a) = -a^2 \theta'(a)$.

Substituting the value of *B* in equation (iv),
$$\theta(a)a = \left(1 + \frac{B}{A}\right)A = A + B$$

$$= A - a^2\theta'(a)$$

$$\Rightarrow A = a\theta(a) + a^2\theta'(a).$$

Then the metric becomes

$$ds^{2} = \frac{1}{(\theta(r))^{2}} c^{2} dt^{2} - (\theta(r))^{2} (dr^{2} + r^{2} d\Omega^{2}) \qquad 0 \le r \le a$$

$$ds^{2} = \frac{1}{\left(1 - \frac{(a^{2} \theta'(a))}{R}\right)^{2}} c^{2} dT^{2} - \left(1 - \frac{(a^{2} \theta'(a))}{R}\right)^{2} (dR^{2} + R^{2} d\Omega^{2}) \qquad A < R$$
where $A = (a\theta(a) + a^{2}\theta'(a))$

References

- 1. Bonnor W.B and Wickramasuriya S.B.P, Int.J.Theor.Phys.5,371(1972).
- 2. Bonnor W.B and Wickramasuriya, Mon. Not.R. Astr. Soc. 170, 643 (1975).
- 3. Wickramasuriya S.B.P PhD. Thesis, University of London.(1972).
- 4. R.Emden, Gaskugelin, Berlin and Leipzig(1907).