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ABSTRACT 

The general characteristic of shallow water flows is that the vertical characteristic scale D 
is essentially smaller than and typical horizontal scale L .i.e. £ := D << 1 . 

L 
In many classical derivations, in order to obtain the shallow water approximation of the 
Navier-Stokes's Equations, the molecular viscosity effect is neglected and a posteriori is 
added into the shallow water model to represent the efficient-viscosity ( a friction term 
through the Chezzy formula which involes empirical constants) at the bottom topography. 

However, the validity of this approach has been questioned in some applications as the 
models lead to different Rankine-Hugoniot curves (see e.g. [1]). Therefore, it can be 
useful to consider the molecular viscosity effect directly in the derivation of the shallow 

water model. On the other hand the classical shallow water models are derived under the 
assumption of slowly varying bottom topographies. Hence, for the description of 
incompressible shallow water laminar flow in a domain with a free boundary and highly 
varying bottom topography, the classical Shallow Water Equations are not applicable. 
The remedy consist of dividing the flow domain into two sub-domains namely, near field 
(sub domain with the bottom boundary) and far field (sub domain with the free boundary) 
with a slowly varying artificial interface and employ the Navier-Stokes Equations and 
Viscous Shallow Water Equations in the near field and far field, respectively. 

In this work, we derive a two-dimensional Viscous Shallow Water model for 
incompressible laminar flows with free moving boundaries and slowly varying bottom 
topographies to employ in the far field. In this approach, the effect of the molecular 
viscosity is retained and thereby corrections to the velocities and the hydrostatic pressure 
approximations are established. Coupling modified shallow water model with NSE has 
been carried out in a separate work. 

In order to derive the viscous shallow water model the two-dimensional Incompressible 
Navier-Stokes equations in usual notations 

au + au2 + auw + ap = � (2v au) + � (v au +V 8w) , 
at ax az ax ax ax az az az 

aw + auw + 8w2 + ap =-g+� (vau +j.law) +� (2vau) , ---------------------------(1) 
at ax az az . ax az ax az az 
aw aw -+-=0. 
ax az 

are employed in the far field with the suitable boundary conditions. On the free surface, 
we assume that the fluid particle does not leave the free surface and we neglect the wind 
effect and the shear stress. On the artificial boundary we set the conditions according 
with the Navier-Stokes solution at the interface. On the lateral boundaries inflow and 
outflow conditions are employed. Rescaling the variables with the typical characteristic 
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scales L and D, the dimensionless form of the Navier-Stokes's equations for shallow 
water flows are obtained. Similarly, assuming that the bottom boundary is regular and the 
gradient of the free surface remains bounded we obtain the dimensionless boundary 

conditions. The second order terms with respect to & in the system are neglected and 
asymptotic analysis is carried out under the assumptions, the flow quantities admit linear 

asymptotic expansion to the second order with respect to & and the molecular viscosity 
of the water is very small. Then, rescaling the depth averaged first momentum equation 
of the resulting system and substituting the zeroth order solution for the velocity and the 
pressure in it the zeroth order first momentum equation which include the interface 
conditions is obtained. Again integrating the continuity equation of the dimensionless 
system from z1 to H(t, x ), a more detailed view of the vertical velocity component is 
established. Similarly, integrating the vertical momentum equation the dimensionless 
system from z1to H(t, x )  and replacing boundary conditions, the second order correction 

to the hydrostatic pressure distribution is derived. Then, dropping o(s2) in the system 

and switching to the variables with dimensions, the following results are established. 
Proposition: The formal second order asymp t ot ic ex p ansion of t he Navier-St okes 
Equat ions for t he shallow wat er laminar flow is given by ( z -z I ) ou . I ou 2 u(t, x, z) = u(t,x,z1) + I- -- -(x, z1 ,t)(z-z1)---(x, z1 ,t)(z-z1) 

2h oz 2h oz 
h(t,x)+z1 OU 

w(t,x,z)=w(t,x,z1)- f -d1] 
OX Z=Zt -

ou ou 
p(t,x,z) = g(h+ z1 -z)-v-(t,x,z)-v-(x,t) 

ox ox 
wit h t he viscous shallow wat er equat ions 

ah + _£_ (�h)= ( w _ u az 1 ) , 
at ax ax z=Zt 

� (�h)+_£_ {�z h)+ _£_ ( gh2 J = _£_(4v h a�J-rl

' 

at ax � 8x 2 ax 8x 

where r, � [ p : +v: +v: -2v ::  +u( u: -w )L,, and z � z,(x, t )  is t he 

int erface. 
Concluding remarks 
In the zeroth order expansion as well as in many classical shallow water models, the 
horizontal velocity does not change along with the vertical direction. In contrast, our first 
order correction gives a quadratic expansion to the vertical velocity components retaining 
more details of the flow. As many classical models we do not neglect the viscosity effect 
but just assume that it is very small. Also, the zeroth order hydrostatic pressure 
approximation has been upgraded to the first order giving a parabolic correction to the 
pressure distribution. 
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