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ABSTRACT 

In a short survey of survey of primitive Pythagorean triples (x,y,z) 0 < x < y < z 
, we have found that one of x, y, z is divisible by 5 and z is not divisible by 3, there 
are Pythagorean triples whose corresponding element are equal , but there cannot be two 

Pythagorean triples such that (x10 y�" z1 ), (x1, zP z2
) , where z1 and z

2 
hypotenuses of the 

corresponding Pythagorean triples. This is due to a Fermat's theorem [1] that the area of a 
Pythagorean triangle cannot be a perfect square of an integer, which can directly be used 
to prove Fermat's last theorem for n = 4. Therefore the preceding theorem is proved using 
elementary mathematics, which is the one of the main objectives of this contribution. All 
results in this contribution are summarized as a theorem. 
Theorem 

If (x, y, z) is a primitive Pythagorean triangle, where z is the hypotenuse, then z is never 

divisible by 3, andJ? = O(mod3) , xyz = O(mod5) ,and there are Pythagorean triangles 
whose corresponding one side is the same. But there are no two Pythagorean triangles such 

that (x1,y"z1) , (x"z"z
2
) ), where z"z

2 
are hypotenuses. 

Proof of the theorem 
Pythagoras' equation can be written as 

z2 =y2+x2,(x,y)=1 (1) 

and if z = O(mod 3) ,then since J? is not divisible by 3, z2 = y2 -1 + x2 -1 + 2 .Now, 
it follows at once from Fermat's little theorem that z cannot be divisible by 3. If 

xyz is not divisible by 5, squaring (1), one obtains z4 = y4 + x4 + 2x2 y2 and hence 

z4 - 1  = y4 -1 + x4 -1 + 2(x2 y2 ± 1) + t, where t = -1 or 3. Therefore xyz = O(mod5). It 
is easy to obtain two Pythagorean triples whose corresponding two elements are equal, 
from the pair-wise disjoint sets which have recently been obtained in Ref.2. For example 

3652 =3642 +2 2 3652 =3642 +2 2 3652 =3572 +� 2 .Now, assume that there exists ' ' 
two primitive Pythagorean triples of the form 

a
z = bz + cz 

dz =az +cz 

(1) 

(2) 

It is clear that a is odd and c = O(mod 3) . From these two equations, one obtains immediately 

d2 - b2 = 2c2, d2 + b2 = 2a2 , and therefore 

d4 -b4 = 4c2a2 = w� (3) 
It has been proved by Fermat, after obtaining the representation of the primitive Pythagorean 
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triples as x = 2rs,y = r2 -s2 ,z = r2 + s2, where 0 < s < r and r,s are of opposite parity, 
that (3) has no non trivial integral solution for d,b, w.To prove the same in an easy 

manner consider the equation d2 + b2 = 2a2 in the form d2 -a2 = a2 -b2 and writing it 
as ( d -a)( d + a) = (a -b)( a +b) use the technique used in Ref.3 to obtain the parametric 

solution for d andb If d -a= a -b., then d + b = 2a , from we deduce db= a2 .This 

never holds since (d,a) = 1 = (b,a) by (1) and (2).1f (d -a)!!_= (a -b) , where (u, v) = 1, 
V 

then 
V 

( d + a)-= (a +b) . From these two relations, one derives the simultaneous 
u 

equations 
vd -ub = a( u -v) 
ud+vb=a(u+v) 

(4a) 
(4b) 

From ( 4a),( 4b ),it is easy to deduce the relations that we need to prove the theorem as 
(v2 + u2 )d = [2uv + u2 -v2 ]a, (v2 + u2 )b = [2uv -(u2 -v2 )]a, 

(v2 +u2)(d+b))=4uva, v2 +u2 =2a, assuming that uand v are odd. 

Hence d -b=(u2 -v2),(d+b)=2uv. Therefore d2 -b2 =2(u2 -v2)uv=2c2 and 
hence u, v are perfect squares and we can find two integers g,h such that. 

g4 -h4 = w12 < w� .Now, proof of the last part of the theorem follows from the method of 
infinite descends of Fermat. Even if u and v are of opposite parity proof of the theorem 
can be done in the same way. 
To complete the proof of a Fermat's theorem that g4 -h4 = w� is not satisfied by any 

non-trivial integers, we write (g2 + h2 )(g2 -h2) = w� , where g,h are of opposite parity, 

to obtain g2 + h2 = x2, g2 -h2 = y2 and x4 -y4 = 4g2 h2 = z� , where x and y are odd 
and eo-prime. But, in the case of the main theorem, we have shown that this is not 
satisfied by any non-trivial odd x, y and even z0 numbers . This completes the proof of the 

Fermat's theorem we mentioned above. 
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