508/E1 ## Enhancement of the photovoltaic conversion efficiency of electrodeposited p-n homojunction cuprous oxide solar cells by surface passivation K M D C Jayathileka^{1,2}, V Kapaklis³, W Siripala² and J K D S Jayanetti^{1*} ¹Department of Physics, University of Colombo, Colombo 03, Sri Lanka ²Department of Physics, University of Kelaniya, Kelaniya, Sri Lanka ³Department of Physics and Astronomy, Uppsala University, Sweden Cuprous oxide homojunction thin films on Ti substrates were fabricated by an inexpensive two-step electrochemical process depositing a p-Cu₂O layer on an n-Cu₂O layer. A p-Cu₂O layer was then sulfided with ammonium sulfide. Photocurrent spectral response and capacitance-voltage measurements were used to determine the conduction type of each layer. These measurements demonstrated the successful formation of a p-n homojunction of cuprous oxide. P-type Cu₂O layers which had undergone the ammonium sulfide treatment showed reduced resistivity, enhanced current-voltage (*I-V*) characteristics. The results revealed that, upon ammonium sulfide treatment, Cu₂O p-n homojunction solar cell performance improved compared to that of the unpassivated Cu₂O p-n homojunction solar cell. This improvement in the ammonium sulfide treated solar cell is attributed to the passivation of defects in the p-Cu₂O layer by sulfur. The resulting Ti/n-Cu₂O/p-Cu₂O/Ni solar cell structure produced an energy conversion efficiency of 1.94 % with V_{oc} = 430 mV and J_{sc}= 10.2 mA cm⁻² under AM 1.5 illumination. This was a significant improvement compared to the efficiency of the unpassivated solar cell structure which was 0.12%. Keywords: Cuprous oxide, electrodeposition, homojunction, spectral response, IV characteristic Acknowledgements: Financial assistance from HETC project (grant KLN/O-Sci/N4)