

J Sci.Univ.Kelaniya 4 (2008): 46-67 Back to Contents

MATHEMATICAL STRUCTURES IN PATTERN ORGANIZATIONS

SALUKA R. KODITUWAKKU

Department of Statistics and Computer Science, University of Peradeniya, Sri Lanka

E-mail: salukak@pdn.ac.lk

ABSTRACT

Since the introduction of design patterns, a large number of patterns have been
identified and documented. As a result, patterns in the literature relate one another in
different ways. Unfortunately, most of these patterns are not properly organized. In
applying these patterns in to problems at hand novice designers encounter many
difficulties such as identification and selection of collectively applicable set of patterns
that suits the problem at hand. We investigate mathematical structures in existing
pattern organization techniques such as pattern catalogues, pattern systems and pattern
languages. Then we attempted to use these mathematical structures in developing a
new organization technique. This paper proposes a new organization method and
illustrates it with a collection of object oriented patterns drawn from the literature. Our
investigation indicated that existing pattern organizations form graph structures and
categorical structures. These structures are formed by patterns and relationships among
them. The proposed organization method organizes patterns into sequences according
to the relationships among patterns. This organization consists of two types of
categories: major category and alternative category. The major categories are defined
based on the Uses relationship and the alternative categories are defined based on the
Variants, Refines and Conflicts relationships. Each major category consists of patterns
that have potential to form a pattern system or a pattern language. So they assist
practitioners in finding a sequence of related patterns that can be collectively applied to
solve complex problems. Each alternative category consists of patterns that provide
alternative solutions to the same problem or similar problems. It assists in finding a
number of possible solutions (patterns) to a particular problem. The proposed
organization combines these two types of categories by structuring them into pattern

Saluka R. Kodituwakku

sequences. A pattern sequence consists of a major category and a collection of related
alternative categories. Pattern sequences assist practitioners in finding a collectively
applicable patterns and possible alternatives to them. So pattern sequences facilitate the
selection of most appropriate sequences of patterns to solve complex problems without
searching through the pattern literature.

Key Words: Design Patterns, Pattern Catalogues, Pattern Systems, Pattern Languages,
Pattern Sequences, Category Theory, Graphs

INTRODUCTION

Although work on software patterns started in late 1980s, it was not until the
early 1990s that patterns began to attract more attention in software industries.
Gamma et al. (1994) have documented some successful designs as object oriented
design patterns. In the last ten years or so, software patterns have grown exponentially
and become very popular in the software industry. The goal of the pattern community
is to create a communication language to share knowledge and experience of software
design.

With ever-growing interest of patterns, the pattern community has identified
and documented a large number of patterns. However, there is no unified method for
describing and organizing these patterns. Some of the existing patterns are organized
into Pattern Catalogues, Pattern Systems or Pattern Languages. Except for the pattern
languages, pattern Catalogues and pattern systems hardly address the relationships
between patterns. When applying a pattern to a particular problem, a user must first
find the most suitable one. Experienced pattern users are able to find and select the
most suitable pattern to their problem, whereas, novice pattern users would need some
guidelines before deciding which pattern to be applied.

Patterns are rooted in many disciplines, including Physics, Biology and
Chemistry. The work on software patterns is largely influenced by Alexander’s work
on urban planning and building construction. Alexander describes the philosophic
aspect of the patterns in “The Timeless Way of Building” (Alexander, 1979), and their
practical aspect in “A Pattern Language” (Alexander, 1977). According to Alexander,
"every pattern we define must be formulated in the form of a rule, which establishes a
relationship between context, a system of forces which arises in that context, and a

Mathematical structures

configuration, which allows these forces to resolve themselves in that context
(Alexander, 1979)".

Alexander (1979) organized his patterns into “A Pattern Language”. Patterns in
this language are arranged from large-scale to small-scale and are connected. Each
pattern is connected to other patterns in two ways. First, it has an opening context,
which explains how the pattern helps to complete certain large patterns. Second it ties
up with all the smaller patterns that help to complete or refine this pattern, which we
call the resultant context or closing context. Both the resulting and opening contexts
help the user decide which pattern should be applied next. In contrast, most software
patterns exist in isolation and a user must make his own decision as to which pattern is
to be used next. In this paper, we describe mathematical structures in existing pattern
organizations and then organize individual patterns into useful groups according to
such mathematical structures.

MATERIALS AND METHODS

First, we discuss existing pattern organization techniques and relationships
among patterns. Then we analyze these organizations and derive mathematical
structures formed by patterns and relationships among them. Finally, we describe how
individual patterns can be organized according to such mathematical structures in order
to assist pattern users. The proposed method is illustrated with object oriented design
patterns derived from the literature.

Pattern Organization Techniques

“A design pattern is an abstraction from a concrete recurring solution that
solves a problem in a certain context” (Gamma et al., 1994). Typically, a software
design pattern has a Name, a Context describing applicability of the pattern, a Problem
addressing the constraints which make hard to solve the problem, a Solution describing
how forces are resolved, Related Patterns referring to the other patterns, and
Consequences describing benefits and drawbacks of application of the patterns.
Authors of object oriented design patterns incorporated additional components such as
Participants describing the components of the solution structure, Collaborations
explaining interactions among participants and Implementation Guidelines including
program fragments.

Saluka R. Kodituwakku

Design patterns were popularized after the publication of Design Pattern
(Gamma et al., 1994) by a group known as Gang-Of Four (GOF). They introduced a
pattern catalogue consisting 23 patterns. These patterns are organized according to the
purpose of patterns. All these patterns address common design problems in Object-
Oriented design. Even though it provides a collection of patterns it provides little
assistance in selecting patterns. The System of Patterns book (Buschnann, 1996) also
introduced a collection of pattern systems for object oriented design. These are large in
scale compared to the patterns in Gang-Of Four catalogue. Later on several pattern
collections (Coplien 1995; Riehle et al., 1998), were introduced by the pattern
community.

Pattern Catalogues

Individual patterns, which address a single design problem, are organized into
pattern Catalogues. The GOF (Gamma et al., 1994) organized them as creational
patterns, structural patterns and behavioral patterns based on the pattern's scope.
Patterns of software architecture (Buschnann, 1996) also organize patterns as
architectural patterns, design patterns and programming pattern based on the scale of
patterns. Individual patterns are also Catalogues based on the purpose of the pattern.
The patterns in a catalog indicate other patterns to consider but do not explicitly
specify the relationships between patterns. So, pattern Catalogues leave the user unable
to understand the patterns and relationships between patterns. In effect, novice users
may not able select the most appropriate or collection of patterns to a problem at hand.
Pattern catalogues provide little assistance in selecting a set of related patterns to solve
complex problems.

Pattern Systems

A pattern system is a set of related patterns, which work together to support the
construction and evolution of whole architectures. Pattern systems are organized into
related groups and subgroups at multiple levels of granularity, describe the many
interrelationships between the patterns and their groupings and describe how they may
be combined and composed to solve more complex problems. Pattern systems are
created from the individual patterns within Catalogues. For example, Model-view-
Controller (Buschnann, 1996) is created from the Observer, Strategy, and Composite
patterns, which are members of the GOF’s catalog. Even though pattern systems

Mathematical structures

provide large scale solutions and combine related individual patterns together, there are
a limited number of systems available. Additionally researchers put more emphasis on
documenting new individual patterns rather than combining individual patterns into
systems or any other useful collections.

Pattern Languages

A pattern language is a collection of related patterns in which each of its
patterns collaborates to solve complex problems that are not explicitly addressed by
any individual pattern. A pattern language includes rules and guidelines, which explain
how/when to apply its patterns to solve a problem, which is larger than any individual
pattern, can solve. These rules and guidelines suggest the order and granularity for
applying each pattern in the language. Pattern languages documented targeting
different application domains can be found from (Coplien, 1995; Riehle et al., 1998;
John et al., 1996; Alexander, 1977). Pattern languages assist users in selecting
complete collection of related patterns to solve complex problems.

Alexander introduced the theory of patterns and he used them to document a
set of patterns, A Pattern Language (Alexander, 1977), for urban planning and
building construction. Alexander’s pattern language is a complete language as it
describes the recurring problems in the entire domain and it is organized based on the
Uses relationship. Software pattern languages are also organized based on the Uses
relationship. However, software pattern languages are complete within a particular
sub-domain. Since pattern languages evolved from individual patterns, it is important
to organize individual patterns that are related by the Uses relationship into languages
or sequences.

Relationships between Patterns

Since patterns do not exist in isolation, each pattern relates to other existing
patterns. In Alexander's pattern language, large-scale patterns contain small-scale
patterns and a small-scale pattern is embedded within a number of large-scale patterns.
Therefore composition relationship can be explicitly identified from Alexander's
patterns.

With ever-growing interest in software patterns, patterns in the literature relate
to one another in a variety of ways. Walter Zimmer classified three types of
relationships between design patterns: X uses Y in its solution, Variant of X uses Y in

Saluka R. Kodituwakku

its solution, and X is similar to Y (Zimmer, 1995). James Nobel identified the three
primary relationships between Object-oriented design patterns: Uses, Refines and
Conflicts. He also proposed a set of secondary relationships: Used By, Refined By,
Variants, Variant Users, Similarity, Combines, Requires, Tiling and Sequence of
Elaboration (Noble, 1998). In this paper, we have considered four common
relationships; Uses, Specialization, Alternative and Variants.

Uses

One pattern uses another pattern when the second problem solves a sub-
problem raised by the application of the first pattern. For example, the Model-View-
Controller pattern uses Strategy, Composite and Observer patterns (Buschnann, 1996;
Gamma et al., 1994).

Alternatives

A set of patterns may propose mutually exclusive solutions to similar
problems. In Design Pattern, creational patterns provide alternative solutions for object
creation. For example, Decorator and Strategy patterns (Gamma et al., 1994) provide
solutions for modifying the behavior of other objects. In Alexander’s language, a
number of alternative patterns can be used as Subculture Boundary (Alexander, 1977).

Specialization

One pattern deals with a specialization of the problem, the same set of forces
as another pattern addresses, but may address additional forces, and has a similar but
more specific solution structure. For example, Object-Lifetime-Manager pattern
(Levine et al., 1999) specializes the Singleton pattern (Gamma et al., 1994).

Variants

Some kinds of design problems and solutions occur more frequently than the
other problems and solutions. Therefore, the method of instantiating patterns is more
common in practice than other methods. Pattern authors address these variant
situations by providing alternative solutions for the same problem or providing a single
solution to a number of different problems. James Nobel classifies such patterns as
pattern Variants and decomposes such variants into Solution Variants and Problem
Variants (Noble, 1998). In Design Pattern, Adapter pattern provides two solutions,

Mathematical structures

Class Adaptor and Object Adapter, to the same problem. Proxy pattern provides a
surrogate for another object and there are several variants of Proxy such as Remote
Proxy, Virtual Proxy, Access Control Proxy and so on. Each of these Proxy patterns
can be used to solve different problems, which require surrogates.

Although only a single example was given for each relationship many such
examples can be found from the literature. Identification of related patterns paves the
way for organizing patterns into useful collections that assist practitioners in selecting
patterns to solve their problems.

Mathematical Structures in Pattern Organizations

Mathematical structures in well-organized patterns such as, Alexander’s
pattern Language, software pattern languages, pattern systems and pattern catalogues
are introduced.

In order to facilitate the understanding of mathematical structures first we
provide the definitions of Graph theory and generalized algebra known as Category
theory (Fokkingga, 1992; Michael, 1995; Pierce, 1991).

52

Definition 2 : Category
Formally, category C can be defined as a collection of objects O in C, which satisfies the
following axioms.

1. Unique-Type: for every pair (p, q) of objects in C, there is a morphism f(p, q), denoted
by f : p → q, from p to q such that f : p → q and f : p’ → q’ ⇒ p = p’ and q = q’

2. Composition-Type: for every triple (p, q, r) of objects in C, there is a partial operation
from pairs of morphisms in f(p, q) × g(q, r) to morphism in f ° g(p, r), such thatf : p →
q and g : q → r ⇒ (g ° f) : p → r.

3. Identity-Type: for every object p in C, there is a morphism idp such that idp: p → p.
4. Associativity: if f : p → q , g : q → r and h : r → s, then h° (g ° f) = (h° g) ° f
5. Identity: if f : p → q , then (idq ° f) = f and (f° ida) = f.

Definition 1: Graph
A graph G is defined as G = (V, E) by a set of nodes and a set of edges E. E is a relation over
V. A labeled graph has the form G = (V, E, f), where f is a function from E into a set of
possible labels.

Saluka R. Kodituwakku

Related patterns form graphs whose nodes are patterns and edges are

relationships. In order to prove that every graph structure is also a category we define
the following objects and morphisms on graphs.

Object: is a node of the graph
Morphism: is a path of the graph, ie f : A → B means a path from A to B.
Identity: is an empty path, and
Composition: is concatenation of paths.
The following section describes how these objects and morphisms satisfy the five
axioms: Unique-type, Composition-Type, Identity-Type and Associativity.
Unique-Type
• Let f: A → B and f: C → D are two paths from A to B and C to D respectively.
Since the two paths (f) are identical, starting nodes and end nodes of the paths should
be equivalent. This means A = C and B = D.
Therefore morphisms are well typed.
Composition-Type
• Let f: A → B and g: B → C are two paths from A to B and B to C respectively.
Since (g ° f) is defined as the concatenation of paths, (g ° f) is the path from A to C via
B.

Definition 3: Pre-category
If the requirement unique type is dropped in the definition of a category, then we get the
definition of pre-category. Often we shall encounter data that forms a pre-category. However,
these data also determined a category.

Definition 3: Subcategory
A subcategory of a category C is completely determined by its objects and morphisms, and C.
A subcategory of a category C is a category in which each object, morphism, and identity is
an object, morphism, and identity in C, and in which the typing and composition of C
restricted to the objects and morphisms of the subcategory.

Definition 4: Full Subcategory
A subcategory of a category C is completely determined by its objects and C. A subcategory
of C is a full subcategory of C if for each A, B in the subcategory, all the morphisms with type
A → B in C are morphisms in the subcategory.

Mathematical structures

This means f : A → B and g : B → C ⇒ (g ° f) : A → C
Identity-Type
• Since identity is an empty path, every object has an identity so that idA : A → A
Associativity
• Let f: A → B, g: B → C and h: C → D are paths from A to B, B to C and C to D
respectively. Then
h° (g ° f) = (A → B)°{(B → C)°(C → D) }
According to the definition of the Composition-Type, h° (g ° f) = (A → B)°(B → D)

⇒ h° (g ° f) = (A → D) ------(1)
Similarly,
(h° g) ° f = {(A → B)°(B → C)}°(C → D)

⇒ h° (g ° f) = (A → C)°(C → D)
⇒ h° (g ° f) = (A → D) ------(2)
(1) and (2) ⇒ h° (g ° f) = h° (g ° f)

This means morphisms are associative.
• Let f: A → B, then
(idA ° f) = (A → A)°(A → B) = A → B --------(1)
(f ° idB) = (A → B)°(B → B) = A → B --------(2)

(1) and (2) ⇒ (idA ° f) = f = (f ° idB)
Since the objects and morphisms defined on graphs satisfy all axioms of a

category, in general, every graph with the above objects and morphisms forms a
Category.

This section describes how patterns in existing organizations form above
mathematical structures: graphs and categories.

Pattern Languages

Typically pattern languages are organized from large-scale patterns to small-
scale patterns based on the relationships between the patterns. Alexander’s pattern
language (Alexander, 1979) is organized based on the Uses and Alternatives
relationships. His language starts with Independent Regions pattern and it addresses the
construction problem as a whole and provides a partial solution by resolving some
forces. Then it directs users to next pattern or patterns, sub-patterns, to use to resolve
the remaining forces. These patterns will in turn provide solutions exposing sub-
problems and sub-patterns to solve them. Each pattern in this language relates one

Saluka R. Kodituwakku

another by Uses and Alternatives relationships. Software Pattern Languages are also
organized based on the Uses relationship but with less number of patterns. They also
provide guidelines to users indicating which pattern or patterns to apply next. So
structure of a pattern language is a directed or labeled graph with few cycles. The
patterns and relationships between them represent the nodes and edges of the graph. A
part of A Pattern Language is shown in Figure 2. This graph depicts patterns that can
be used for building and town construction. In applying these patterns, designers can
start with a pattern in top of the diagram and then apply the patterns directed from that
pattern and related with the uses relationship. For instance, in order to design
subculture boundary first apply the Subculture Boundary pattern and then Still Water,
Access to water, Parallel roads, Industrial ribbon and Work community. It also
provides alternatives such as Ring roads, Accessible greens and so on.

Software pattern languages have been documented following the Alexander’s
languages. However, almost all of the software pattern languages are documented with
a fewer number of patterns and they address only a particular section of the application
domain. Software pattern languages available in the literature provide solution to
subproblems of software design. For example such languages provide solutions for
web designing, GUI designing and so forth. Even though they are small compared to
the Alexander’s pattern language they also form similar graph structures. So pattern
languages form categorical structures.

Pattern Catalogues and Systems

Since patterns do not exist isolation, they relate one another in different ways.
Members of the pattern Catalogues and pattern systems can be combined based on
such relationships. So, individual patterns and systems also form a number of labeled
graphs but each of them with a number of different labels. For example, Figure 3 and
Figure 4 show how individual patterns and pattern systems form such graphs. Figure 3
depicts a collection of patterns that provide alternative solutions to the same problem.
Patterns in the Left hand side and the right hand side provide different solutions for the
problem addressed by the Proxy pattern. Any of these patterns can be used to solve the
problem in different contexts. Figure 4 shows a collection of patterns that relate one
another in various ways. Patterns in these Figures form networks of patterns and
relationships. So they also form categorical structures.

55

Mathematical structures

Figure 1: A portion of the structure of the A Pattern Language

Figure 2: Illustration of individual patterns

56

Saluka R. Kodituwakku

Figure 3: Illustration of individual patterns and pattern system

According to the definition of a category patterns organized into categories,
systems and languages form categorical structures. These structures are not visible,
because the relationships among patterns in such organization are not clearly discussed
or identified.

 Organizing Patterns into Sequences

This section presents the proposed organization of patterns. The structure of
the organization consists of large-scale categories and small-scale categories. Small
categories are derived from the large-scale categories. Since the purpose of this
organization is to regroup patterns scattered through the literatures as individual
patterns and pattern systems, a collection patterns systems available in (Buschnann,
1996) and a collection of individual patterns in (Riehle et al., 1998; Gamma et al.,
1995) are used to illustrate the proposed organization In organizing patterns into

Mathematical structures

sequences, first relationships among patterns are identified. Then large scale categories
are constructed based on the identified relationships. Finally large scale categories are
decomposed into more meaningful sub categories. In order to distinguish different
relationships among patterns the graph structures are depicted with following
notations.

Relationship Notation

Uses

Specialization
(Refines)

Alternatives
(Conflicts)

Variants

2.4.1 Large Scale Categories

In general, the Uses relationship is used to organize pattern languages. Patterns

in Catalogues and systems are related by a number of relationships. As a result,
patterns which address a particular problem and its sub-problems are related to one
another by a number of relationships. The patterns can be organized into graphs and,
hence into categories of patterns as follows.

Objects: are patterns, which can be connected by relationships between them to form
a graph
Morphism: a pair of patterns (A, B) with A Relates B (a path from A to B)
Identity: idA = (A, A) (empty path)
Composition: (A, B)° (B, C) = (A, C)

Large-scale structures constructed from pattern languages, pattern catalogues
and pattern systems are discussed in the proceeding sections.

Small-scale categories

The large-scale category contains patterns, which are related by a number of
relationships. This category can be further organized into a set of sub-categories. Once

Saluka R. Kodituwakku

the patterns have been organized into categories, they can be further categorized
according to the following structures.

Major Categories - Categories based on Uses/Is used relationship

Some of the patterns in the large scale categories are related by Uses
relationship. These patterns can be organized into a separate category, which provides
a set of patterns, which can be used to solve a particular problem. If this category of
patterns completely solves the problem, it can be extended to a pattern language by
adding rules and guidelines. Otherwise it becomes an incomplete language but it can
be extend to a pattern language by adding patterns are being written. Define the
category as follows:

Objects: are objects in the category defined in section 4.3 which are connected by the
Uses / Is used relationship
Morphism: a pair of patterns (A, B) with A Uses/Is used B
Identity: idA = (A, A)
Composition: (A, B)° (B, C) = (A, C)

Alternative Categories

Patterns that are not related with the Uses relationship are also available in
large scale categories. These patterns are also derived and organized into
subcategories. Each such category provides a collection of alternative patterns to the
members of the major categories. So they assist users in selecting the most appropriate
pattern among a collection. Three types of alternative categories are derived based on
the Specializes, Variants and Conflicts relationships.

Categories based on Specializes/Generalizes relationship

The patterns related by Specialization relationship can be organized into
another category or a set of categories. Each of these categories provides specialization
of the patterns in pattern languages or major categories. This category helps user to
find the general and specific solution of a pattern. The category can be formed as
follows:

59

Mathematical structures

Objects: are objects in the category defined in section 4.3 which are connected by the
Specialization / Generalization relationship
Morphism: a pair of patterns (A, B) with A Specializes (Refines) B
Identity: idA = (A, A)
Composition: (A, B)° (B, C) = (A, C)

Categories based on Alternatives (Conflicts) relationship

A set of patterns related by Alternatives relationship provides alternative
solutions to similar problems. Such patterns can be organized into a separate category
and such an organization provides the alternative patterns to a particular pattern in
pattern languages and major categories. This assists users to select the most suitable
pattern(s) from a set of patterns, which are applicable to a particular problem. The
category is defined as follows:

Objects: are objects in the above category (5.1) which are connected by the
Alternatives (Conflicts) relationship
Morphism: a pair of patterns (A, B) with A Conflicts B
Identity: idA = (A, A)
Composition: (A, B)° (B, C) = (A, C)

Categories based on Variants relationship

The categorization of patterns based on the Variants relationship helps user to
find possible variants of a particular pattern. So, the patterns in this category provide
alternative solutions to the same problem or a common solution to a number of
different problems. Therefore, user can select an appropriate variant of a pattern to
solve the problem at hand. The category is formed as follows:

Objects: are objects in the above category (5.1) which are connected by the Variants
relationship
Morphism: a pair of patterns (A, B) with A is a variant of B
Identity: idA = (A, A)
Composition: (A, B)° (B, C) = (A, C)

These categories satisfy the conditions mentioned in the definition 3. As such,
these are subcategories of the category defined above.

Saluka R. Kodituwakku

Application of the methodology
We have applied this technique to organize patterns in GOF catalogue

(Gamma et al., 1994), Patterns of Software Architecture (Buschnann, 1996) and
some individual patterns derived from the literature to illustrate the method. These
patterns form a category shown in Figures 3 and 4. These categories are partitioned
into subcategories according to the type of relationships. More precisely a collection of
patterns related with a particular type and formed a graph structure are derived and
organized into a separate subcategory. In this way several major categories and
alternative categories are derived. Finally each major category along with related
alternative categories is organized into a pattern sequence. In order to save the space
one of the resultant major categories and some of the alternative categories are shown.
Other categories are listed with members only.

Deriving Major Categories

 In the categories shown in Figures 3 and 4, there are two sets of patterns that
are related with the Uses relationship can be identified. One set consists of Template
Method, Hook Method, Abstract Factory, Prototype, Factory Method, Singleton,
Builder and Direct Creation. This set is organized into a major category and is shown
in Figure 5. The other one consists of Model-View-Controller, Observer, Composite,
Strategy, Decorator, Visitor and Iterator. It is organized into another major category.

Figure 4: Example-structure of a category based on Uses relationship

61

Mathematical structures

Deriving Alternative Categories
In the categories shown in Figures 3 and 4, there are four sets of patterns that

are related with the Refines relationship can be identified. These are organized into
separate alternative categories. First category consists of Proxy, Member Access
Proxy, DoesNotUndertandProxy, Distributed proxy, Delegating Proxy, Interprocess
Proxy and Intermachine proxy. This category is shown in Figure 6. Other categories
consist of patterns listed below.
{Curried object, Pen, Iterator, Typesafe session and Accumulator}
{Natural creation, Abstract Factory, Factory method, Builder, Hook method}
{Direct creation, Prototype}

Figure 5: Example-structure of a category based on Refines relationship

In the category shown in Figures 3 and 4, there are three sets of patterns that
are related with the Conflicts relationship can be identified. These are organized into
separate alternative categories. First category consists of Member Access Proxy,
DoesNotUndertandProxy and Delegating Proxy. This category is shown in Figure 7.
Other categories consist of patterns listed below.
{Strategy and Template Method}
{Abstract Factory, Builder}

62

Saluka R. Kodituwakku

Figure 6: Example-structure of a category based on Conflicts relationship

In the category shown in Figures 3 and 4, there are two sets of patterns that are
related with the Variant relationship can be identified. These are organized into
separate alternative categories. First category consists of Proxy, Access Proxy, Remote
Proxy, Protection Proxy, Cache Proxy, Synch Proxy, Counting Proxy, virtual Proxy,
Firewall Proxy, Lazy Proxy and Distributed Proxy. This category is shown in Figure 8.
Other categories consist of patterns listed below.

{Composite, Two-Way Composite, Lambda Composite, Two-Dimensional
Composite and Cascade}

Figure 7: Example-structures of the categories based on Variants relationship

In applying the methodology to categories shown in Figures 3 and 4, two

major categories and nine alternative categories are obtained. The next step is to
organize them into sequences. Since there are two major categories, two pattern
sequences can be formed. They can be formed by combining each major category with
the related alternative categories.

One major category consists of Template Method, Hook Method, Abstract
Factory, Prototype, Factory Method, Singleton and Direct Creation. Among the

Mathematical structures

resultant alternative categories select the categories that have members of this major
category. Alternative categories {Natural creation, Abstract Factory, Factory method,
Builder, Hook method} and {Direct creation, Prototype} contain some members of this
major category. Therefore the first sequence consists of these three categories. That is:
Sequence 1
Major category – {Template Method, Hook Method, Abstract Factory, Prototype,
Factory Method, Singleton and Direct Creation}
Subcategories - {Natural creation, Abstract Factory, Factory method, Builder, Hook
method} and {Direct creation, Prototype}

 The second major category consists of Model-View-Controller, Observer,
Composite, Strategy, Decorator, Visitor and Iterator. Alternative categories {Strategy,
Template Method} and {Composite, Two-Way Composite, Lambda Composite, Two-
Dimensional Composite, Cascade} contain members of this major category. Therefore
the second sequence consists of these three categories. That is:

Sequence 2
Major category – {Model-View-Controller, Observer, Composite, Strategy, Decorator,
Visitor and Iterator}
Subcategories - {Strategy, Template Method} and {Composite, Two-Way Composite,
Lambda Composite, Two-Dimensional Composite, Cascade}.

DISCUSSION

Since pattern languages address the pattern selection problem by providing
rules and guidelines, pattern languages are the best organization method among
existing organization methods. Uses or Combines relationship connects each pattern in
a pattern language to one another. Therefore, pattern language forms a directed-labeled
graph. We have proved that every graph is a category.

In contrast, individual patterns exist in isolation but they are implicitly related
to one another in different ways. These relationships are used to connect the patterns
such a way that they also form categories. These categories are the large-scale
structures of the pattern organization. These structures may contain a number of
sequences of patterns which are related one another by Uses relationships. Since,
patterns connected by the Uses relationship can be extended into pattern languages,
they are organized into subcategories and such categories are the major small-scale

Saluka R. Kodituwakku

structures of the organization. Each pattern in these major categories is linked to
another category, which contains variants of the pattern. These secondary categories
help to find alternative patterns.

I have applied this technique to organize patterns in the literature. The
application results in two major categories and nine alternative categories. This results
in two sequences. Practitioners can first search the sequences to find a collection of
related patterns to solve their problems. Users can select entire major category of
patterns or a subset of a major category, which can be collectively applied to solve a
particular design problem. If users need to find alternative patterns, they can be found
from the related alternative categories available in the sequence. This organization
reduces the amount of searching for applicable patterns. It also addresses the pattern
selection problem up to some extent. However, this organization technique needs to be
optimized with indexing or reasoning technique because users need to select an
appropriate sequence for a particular application domain or a problem.

Conclusions and Future Work

In this paper, I have discussed the mathematical structures in existing pattern
organization techniques, and the common relationships between patterns. I have also
described the mathematical structures in current organization methods, and have
introduced a new organization technique based on the mathematical structures in
efficient pattern organizations. This technique organizes the related pattern into pattern
sequences. Each sequence consists of a category based the Uses relationship and a
collection of related alternative categories. New organization help both experienced
and novice users to find a set of related patterns among the existing patterns. In effect,
users can easily find a collection of related patterns to a particular problem. The
benefits of this organization method can be summarized as follows.

1. Practitioners can find a collection of related patterns from the sequences that

provide patterns related with the Uses relationship and possible alternatives to
those patterns.

2. Major and alternative categories facilitates the selection of the most appropriate
collection of patterns to a problem quickly and easily.

3. The applicability of the proposed organization could be optimized by incorporating
an indexing or reasoning technique.

Mathematical structures

REFERENCE
Alexander, C., M. Silverstein & S. Ishikawa. 1977. A Pattern Language. Oxford

University Press, first edition.
Alexander, C. 1979. The Timeless Way of Building, Oxford University Press, first

edition.
Barr, M. & C. Wells. 1995, Category Theory for Computing Science, Prentice Hall;

2nd edition.
Coplien, O. 1996. Software Patterns a White Paper. SIGS publications.
Coplien, O. & D. Schmidt. 1995. Pattern Languages of Program Design, Addition-

Wesley, first edition.
Fokkingga, M.M. 1992. A Gentle Introduction to Category Theory, University of

Utrecht.
Fowler, M. 1997. Analysis Patterns: reusable object modules. Addition-Wesley, first

edition.
Gamma, E., H. Richard, R. Johnson & J. Vlissides. 1994. Design patterns elements

of reusable object oriented software. Addition-Wesley, second edition.
John, M., J. Coplien, J. Vlissides & L.K. Norman, 1996. Pattern Languages of

Program Design 2. Addition-Wesley, first edition.
Lavender, R. G. & D. Schmidt. 1996. Active object: A behavioral pattern for

concurrent programming. Pattern Languages of Program Design 2, 483-500.
Levine, D. L., C. D. Gill & D. Schmidth. 1999. Object Lifetime Manager: A

complementary pattern for controlling object creation and destruction.
Submitted to 5th Pattern Languages of Programming Conference.

Noble, J. 1998. Classifying relationships between object-oriented design patterns. In
Australian Software Engineering Conference (ASWEC).

Pierce, B. C. 1991, Basic Category Theory for Computer Scientists, The MIT Press.
Pree, W. 1994. Design Patterns for Object Oriented Software development. Addition-

Wesley, first edition.
Richard, G. Patterns Definitions. http://hillside.net/patterns/definitions.html.
Riehle, D., R. Martin & F. Buschmann. 1998. Pattern languages of program design 3.

Addition-Wesley, first edition.
Rising, L. 2000. The Pattern Almanac 2000, Addition-Wesley, first edition.

66

Saluka R. Kodituwakku

Rohnert, H., F. Buschmann, M. Regine & P. Sommerland. 1996. A System of
Patterns. Addition-Wesley, first edition.

Schmidt, D. & C.D. Cranor. 1996. Half-sync/Half-async: An architectural pattern for
efficient and well-structured concurrent I/O. Pattern Languages of Program
Design 2 : 437-460.

Zhao, L. & T. Foster. 1998. Plots: A Pattern Language of Transport Systems- Point
and Route. Pattern Language of Program design 3.

Zimmer, W. 1995. Relationships Between Design Patterns. Pattern Languages of
Program Design 1: 345-364.

 Back to Contents

67

