Abstract:
BACKGROUND:Reports of abnormalities of potassium-channel function in various cultured cells of Alzheimer's disease patients led us to attempt to characterise the pharmacological characteristics of the abnormal channel.METHODS: We studied platelets from 14 patients with Alzheimer-type dementia and 14 non-demented controls matched for age and sex. The effects of specific inhibitors of K+ channels on the efflux of rubidium-86 ions, a radioactive analogue of K+, from the platelets were measured.FINDINGS: Normal platelets contain three types of K+ channel, sensitive to the inhibitory actions of apamin (small-conductance calcium-dependent potassium channels), charybdotoxin (of less specificity, but probably intermediate-conductance calcium-dependent K+ channels), and alpha-dendrotoxin (voltage-sensitive K+ channels). However, 8Rb+ efflux from the platelets of patients with Alzheimer-type dementia was not inhibited by either apamin or charybdotoxin. By contrast, inhibition by alpha-dendrotoxin did occur. INTERPRETATION: Our results suggest that calcium-dependent K+ channels in platelets are selectively impaired in Alzheimer's disease. A similar abnormality in neurons could contribute to the pathophysiology of the disorder.