Digital Repository

A Trust based Advanced Machine Learning Approach for Mobile Ad-hoc Network Securty

Show simple item record

dc.contributor.author Jinarajadasa, G.M.
dc.contributor.author Liyanage, S.R.
dc.date.accessioned 2019-08-23T03:49:18Z
dc.date.available 2019-08-23T03:49:18Z
dc.date.issued 2019
dc.identifier.citation Jinarajadasa, G.M. and Liyanage, S.R. (2019). A Trust based Advanced Machine Learning Approach for Mobile Ad-hoc Network Securty. 4th International Conference on Advances in Computing and Technology (ICACT ‒ 2019), Faculty of Computing and Technology, University of Kelaniya, Sri Lanka. p12. en_US
dc.identifier.uri http://repository.kln.ac.lk/handle/123456789/20368
dc.description.abstract Mobile Ad-hoc Networks (MANETs) are one of the types of Wireless Ad-hoc Networks which consist of autonomous mobile nodes connected wirelessly. These are self-configured, lessinfrastructure networks which are having highly dynamic topologies due to the frequent link changes in the network including the addition of new nodes, removal of existing nodes and etc. Because of this dynamic nature, various issues regarding the reliability of the communication and other security threats such as malicious attacks occur in MANETs. Since ‘Trust’ is the major factor which reliability and the security rely on, enhancing the trust in a MANET ensures that the security of the network environment is achieved. Over the recent past decade, a plenty of researches have been done in the related area including approaches of Machine Learning, Swarm Intelligence, Mobile Agents and Probabilistic Models. When comparing the different properties of each approach such as memory, computational power, flexibility to topology changes, the accuracy of results and cost, applying machine learning techniques has been efficient and accurate in providing results. Among Machine learning approaches reinforcement learning gains a more suitability for applied in mobile ad hoc networks since it gives more accurate results due to the ability to capturing the dynamic behaviour easily as well as no need for historical data to give predictions where it can give predictions on newly joined network nodes also. And when selecting the best algorithm because of the physical distribution of MANET information, an algorithm which has the ability to be distributed among the nodes has to be chosen. Instead of considering direct and indirect trust separately, it is recommended to apply a hybrid trust approach which aggregates the trust values. Hence, considering all this information the future research work is planned to be launch in the area of machine learning; specifically, in the area of reinforcement learning according to the analyzed results of early work. Therefore, this research work is proposing to develop a trust computational model, which uses an advanced machine learning mechanism to predict the trust value of each network node. en_US
dc.language.iso en en_US
dc.publisher 4th International Conference on Advances in Computing and Technology (ICACT ‒ 2019), Faculty of Computing and Technology, University of Kelaniya, Sri Lanka en_US
dc.subject Mobile Ad-hoc Networks en_US
dc.subject Malicious Attacks en_US
dc.subject Nodes en_US
dc.subject Trust en_US
dc.title A Trust based Advanced Machine Learning Approach for Mobile Ad-hoc Network Securty en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account