Digital Repository

Temporal preferential attachment: Predicting new links in temporal social networks

Show simple item record

dc.contributor.author Wickramarachchi, Panchani
dc.contributor.author Munasinghe, Lankeshwara
dc.date.accessioned 2022-10-31T06:02:28Z
dc.date.available 2022-10-31T06:02:28Z
dc.date.issued 2021
dc.identifier.citation Wickramarachchi Panchani; Munasinghe Lankeshwara (2021), Temporal preferential attachment: Predicting new links in temporal social networks, International Research Conference on Smart Computing and Systems Engineering (SCSE 2021), Department of Industrial Management, Faculty of Science, University of Kelaniya Sri Lanka. 22-27. en_US
dc.identifier.uri http://repository.kln.ac.lk/handle/123456789/25346
dc.description.abstract Social networks have shown an exponential growth in the recent past. It has estimated that nearly 4 billion people are currently using social networks. The growth of social networks can be explained using different models. Preferential Attachment (PA) is a widely used model, which is often used to link prediction in social networks. PA tells that the social network users prefer to get linked with popular users in the network. However, the popularity of a node depends not only on the node’s degree but also on the node's activeness which is reflected by the amount of active links the node has at present. Activeness of a link can be quantified using the timestamp of the link. The present work introduces a novel method called Temporal Preferential Attachment (TPA) which is defined on the activeness and strength of a node. Strength of a node is the sum of weights of links attached to the node. Here, the weights of the links are assigned according to their activeness. Thus, TPA captures the temporal behaviors of nodes, which is a vital factor for new link formation. The novel method uses min - max scaling to scale the time differences between current time and the timestamps of the links. Here, the min value is the earliest timestamp of the links in the given network and max value is the latest timestamp of the links. The scaled time difference of a link is considered as the temporal weight of the link, which reflects its activeness. TPA was evaluated in terms of its link prediction performance using well-known social network data sets. The results show that TPA performs well in link prediction compared to PA, and show a significant improvement in prediction accuracy. en_US
dc.publisher Department of Industrial Management, Faculty of Science, University of Kelaniya Sri Lanka en_US
dc.subject activeness of links, link pre- diction, social networks, TPA en_US
dc.title Temporal preferential attachment: Predicting new links in temporal social networks en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account