Digital Repository

Detection of IoT Malware Based on Forensic Analysis of Network Traffic Features

Show simple item record

dc.contributor.author Nimalasingam, Nisais
dc.contributor.author Senanayake, Janaka
dc.contributor.author Rajapakse, Chathura
dc.date.accessioned 2022-10-31T08:52:45Z
dc.date.available 2022-10-31T08:52:45Z
dc.date.issued 2022
dc.identifier.citation Nimalasingam Nisais; Senanayake Janaka; Rajapakse Chathura (2022), Detection of IoT Malware Based on Forensic Analysis of Network Traffic Features, International Research Conference on Smart Computing and Systems Engineering (SCSE 2022), Department of Industrial Management, Faculty of Science, University of Kelaniya Sri Lanka. 121-130. en_US
dc.identifier.uri http://repository.kln.ac.lk/handle/123456789/25414
dc.description.abstract The usage of Internet of Things (IoT) devices is getting unavoidable lately, from handheld devices to factory automated machines and even IoT embedded automotive vehicles. On average, 100+ devices are connected to the IoT world per second, and the volume of data generated by these devices and added to the space is just too enormous. The value of the data costs more, and sometimes it is invaluable, and it may pull over the cybercriminals and eventually increases the number of cybercrimes. Therefore, the need to identify malware in IoT is a timely requirement. This research work applies Machine Learning (ML) models and yields an efficient lead to identifying the IoT malware using forensic analysis of their network traffic features by selecting the foremost unique features and combining them with the binary features of the malware families. An outsized dataset with many network traffic collections used various network traffic features. Thus, the proposed model's detection accuracy of almost 100% was achieved from the model during the experimental phase of the study, which was a result of the feature extraction process for each malware type. This model can be further improved by considering the fog level implementation of the IoT layer, where the learning will help identify a malicious packet transfer to the network at level zero. en_US
dc.publisher Department of Industrial Management, Faculty of Science, University of Kelaniya Sri Lanka en_US
dc.subject feature selection, forensic analysis, IoT Malware, IoT network traffic, Machine Learning en_US
dc.title Detection of IoT Malware Based on Forensic Analysis of Network Traffic Features en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account