Abstract:
Low temperature electrochemical deposition of cuprous oxide from aqueous solutions has been investigated. X-ray diffraction, scanning electron microscopy, optical absorption, and photo-response of liquid/cuprous oxide junctions have been used to study the deposits' crystallographic, morphological, optical, and electrical properties. Effects of annealing in air have been studied using the above mentioned methods. As-deposited cuprous oxide exhibits a direct band gap of 2.0 eV, and shows an n-type behaviour when used in an liquid/solid junction. Annealing below 300�C enhances the n-type photocurrent produced by the junction. Type conversion occurs after heat treatments in air at temperatures above 300�C. No apparent bulk structure changes have been observed during annealing below this temperature, but heat treatments above this temperature produce darker films containing cupric oxide and its complexes with water.