Digital Repository

Advancing tourism demand forecasting in Sri Lanka: evaluating the performance of machine learning models and the impact of social media data integration

Show simple item record

dc.contributor.author Hewapathirana, Isuru Udayangani
dc.date.accessioned 2024-10-24T06:55:11Z
dc.date.available 2024-10-24T06:55:11Z
dc.date.issued 2023
dc.identifier.citation Hewapathirana, I.U. (2023), "Advancing tourism demand forecasting in Sri Lanka: evaluating the performance of machine learning models and the impact of social media data integration", Journal of Tourism Futures, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/JTF-06-2023-0149 en_US
dc.identifier.uri http://repository.kln.ac.lk/handle/123456789/28575
dc.description.abstract Purpose – This study explores the pioneering approach of utilising machine learning (ML) models and integrating social media data for predicting tourist arrivals in Sri Lanka. Design/methodology/approach – Two sets of experiments are performed in this research. First, the predictive accuracy of three ML models, support vector regression (SVR), random forest (RF) and artificial neural network (ANN), is compared against the seasonal autoregressive integrated moving average (SARIMA) model using historical tourist arrivals as features. Subsequently, the impact of incorporating social media data from TripAdvisor and Google Trends as additional features is investigated. Findings – The findings reveal that the ML models generally outperform the SARIMA model, particularly from 2019 to 2021, when several unexpected events occurred in Sri Lanka. When integrating social media data, the RF model performs significantly better during most years, whereas the SVR model does not exhibit significant improvement. Although adding social media data to the ANN model does not yield superior forecasts, it exhibits proficiency in capturing data trends. Practical implications – The findings offer substantial implications for the industry’s growth and resilience, allowing stakeholders to make accurate data-driven decisions to navigate the unpredictable dynamics of Sri Lanka’s tourism sector. Originality/value – This study presents the first exploration of ML models and the integration of social media data for forecasting Sri Lankan tourist arrivals, contributing to the advancement of research in this domain. en_US
dc.publisher Emerald Publishing Limited en_US
dc.subject Tourism demand forecasting, Social media analytics, Machine learning, Support vector regression, Random forest, Artificial neural network, Sri Lanka en_US
dc.title Advancing tourism demand forecasting in Sri Lanka: evaluating the performance of machine learning models and the impact of social media data integration en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account